Suppr超能文献

重复事件的贝叶斯分层持续时间模型:在行为观察中的应用

Bayesian Hierarchical Duration Model for Repeated Events : An Application to Behavioral Observations.

作者信息

Dagne Getachew A, Snyder James

机构信息

University of South Florida.

出版信息

J Appl Stat. 2009 Nov 1;36(11):1267-1279. doi: 10.1080/02664760802587032.

Abstract

This paper presents a continuous-time Bayesian model for analyzing durations of behavior displays in social interactions. Duration data of social interactions are often complex because of repeated behaviors (events) at individual or group (e.g., dyad) level, multiple behaviors (multistates), and several choices of exit from a current event (competing risks). A multilevel, multistate model is proposed to adequately characterize the behavioral processes. The model incorporates dyad-specific and transition-specific random effects to account for heterogeneity among dyads and interdependence among competing risks. The proposed method is applied to child-parent observational data derived from the School Transitions Project to assess the relation of emotional expression in child-parent interaction to risk for early and persisting child conduct problems.

摘要

本文提出了一种连续时间贝叶斯模型,用于分析社交互动中行为表现的持续时间。由于个体或群体(如二元组)层面的重复行为(事件)、多种行为(多状态)以及当前事件的多种退出选择(竞争风险),社交互动的持续时间数据往往很复杂。本文提出了一种多层次、多状态模型来充分表征行为过程。该模型纳入了二元组特定和转换特定的随机效应,以解释二元组之间的异质性和竞争风险之间的相互依赖性。所提出的方法应用于来自学校过渡项目的亲子观察数据,以评估亲子互动中的情感表达与儿童早期和持续行为问题风险之间的关系。

相似文献

本文引用的文献

4
Analysing repeated measurements data: a practical comparison of methods.分析重复测量数据:方法的实际比较
Stat Med. 1999 Jul 15;18(13):1587-603. doi: 10.1002/(sici)1097-0258(19990715)18:13<1587::aid-sim141>3.0.co;2-z.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验