Dagne Getachew A, Snyder James
University of South Florida.
J Appl Stat. 2009 Nov 1;36(11):1267-1279. doi: 10.1080/02664760802587032.
This paper presents a continuous-time Bayesian model for analyzing durations of behavior displays in social interactions. Duration data of social interactions are often complex because of repeated behaviors (events) at individual or group (e.g., dyad) level, multiple behaviors (multistates), and several choices of exit from a current event (competing risks). A multilevel, multistate model is proposed to adequately characterize the behavioral processes. The model incorporates dyad-specific and transition-specific random effects to account for heterogeneity among dyads and interdependence among competing risks. The proposed method is applied to child-parent observational data derived from the School Transitions Project to assess the relation of emotional expression in child-parent interaction to risk for early and persisting child conduct problems.
本文提出了一种连续时间贝叶斯模型,用于分析社交互动中行为表现的持续时间。由于个体或群体(如二元组)层面的重复行为(事件)、多种行为(多状态)以及当前事件的多种退出选择(竞争风险),社交互动的持续时间数据往往很复杂。本文提出了一种多层次、多状态模型来充分表征行为过程。该模型纳入了二元组特定和转换特定的随机效应,以解释二元组之间的异质性和竞争风险之间的相互依赖性。所提出的方法应用于来自学校过渡项目的亲子观察数据,以评估亲子互动中的情感表达与儿童早期和持续行为问题风险之间的关系。