Situma Catherine, Wang Yun, Hupert Mateusz, Barany Francis, McCarley Robin L, Soper Steven A
Center for Biomodular Multi-Scale Systems, Louisiana State University, Baton Rouge, LA 70803, USA.
Anal Biochem. 2005 May 1;340(1):123-35. doi: 10.1016/j.ab.2005.01.044.
We have developed a simple ultraviolet (UV)-photomodification protocol using poly(methyl methacrylate) and polycarbonate to produce functional scaffolds consisting of carboxylic groups that allow covalent attachment of amine-terminated oligonucleotide probes to these surface groups through carbodiimide coupling. Use of the photomodification procedure coupled to microfluidics allowed for the rapid generation of medium-density DNA microarrays. The method reported herein involves the use of poly(dimethylsiloxane) microchannels reversibly sealed to photomodified poly(methyl methacrylate) surfaces to serve as stencils for patterning the oligonucleotide probes. After array construction, the poly(dimethylsiloxane) stencil is rotated 90 degrees to allow interrogation of the array using microfluidics. The photomodification process for array fabrication involves only three steps: (1) broadband UV exposure of the polymer surface, (2) carbodiimide coupling of amine-terminated oligonucleotide probes to the surface (via an amide bond), and (3) washing of the surface. The density of probes attached to this activated surface was found to be approximately 41pmolcm(-2), near the steric-saturation limit for short oligonucleotide probes. We demonstrate the use of this procedure for screening multiple KRAS2 mutations possessing high diagnostic value for colorectal cancers. A ligase detection reaction/universal array assay was carried out using parallel detection of two different low-abundant DNA point mutations in KRAS2 oncogenes with the allelic composition evaluated at one locus. Four zip code probes immobilized onto the poly(methyl methacrylate) surface directed allele-specific ligation products containing mutations in the KRAS2 gene (12.2D, 12.2A, 12.2V, and 13.4D) to the appropriate address of a universal array with minimal amounts of cross-hybridization or misligation.
我们开发了一种简单的紫外线(UV)光修饰方案,使用聚甲基丙烯酸甲酯和聚碳酸酯来制备由羧基组成的功能性支架,这些羧基能够通过碳二亚胺偶联将胺基末端的寡核苷酸探针共价连接到这些表面基团上。将光修饰程序与微流体技术相结合,能够快速生成中密度DNA微阵列。本文报道的方法涉及使用可逆密封在光修饰聚甲基丙烯酸甲酯表面的聚二甲基硅氧烷微通道作为模板来对寡核苷酸探针进行图案化。在阵列构建完成后,将聚二甲基硅氧烷模板旋转90度,以便使用微流体技术对阵列进行检测。用于阵列制造的光修饰过程仅包括三个步骤:(1)聚合物表面的宽带紫外线照射;(2)胺基末端的寡核苷酸探针与表面的碳二亚胺偶联(通过酰胺键);(3)表面洗涤。发现附着在该活化表面上的探针密度约为41pmol/cm²,接近短寡核苷酸探针的空间饱和极限。我们展示了该程序用于筛选对结直肠癌具有高诊断价值的多个KRAS2突变的用途。使用对KRAS2癌基因中两个不同的低丰度DNA点突变进行平行检测并在一个位点评估等位基因组成的连接酶检测反应/通用阵列分析。固定在聚甲基丙烯酸甲酯表面的四个邮政编码探针将含有KRAS2基因(12.2D、12.2A、12.2V和13.4D)突变的等位基因特异性连接产物引导至通用阵列的适当地址,交叉杂交或错配量最少。