Duncan Bradford W, Olkin Ingram
Department of Medicine, Center for Primary Care and Outcomes Research, Stanford University School of Medicine, Stanford, CA 94305-4065, USA.
Stat Med. 2005 Jun 30;24(12):1837-48. doi: 10.1002/sim.2076.
There are several commonly used measures of association between treatment and control event rates in the population (piT and piC, respectively). One such measure, the number needed to treat (NNT) indicates the number of patients, on average, who must be treated in order to prevent one additional adverse event, and is equal to 1/(piC - piT). Because the population values piC and piT are unknown, the sample proportions (rates) pC and pT are used as estimates. The precision of a sample-based estimator is usually exhibited in terms of confidence intervals. However, the accuracy of the estimator (i.e., its bias) is often ignored. The purpose of the present study is to examine the degree of bias. Using exact calculations based on the binomial theorem, we determined the bias of an estimate of NNT conditional on pC not equal pT, and the bias of an adjusted estimator of the NNT for various sample sizes (n= 10, 20, 30, 40, 50, 100) and population parameters (0.01 < or = piC < or = 0.9; 0.01 < or = piC - piT < or = 0.8). The magnitude and non-monotonic nature of the bias are due to the NNT scale. The bias of the adjusted estimator can be approximated for some studies using the tabular results in this analysis.
在总体中,有几种常用的衡量治疗事件率与对照事件率之间关联的指标(分别为πT和πC)。其中一种指标,即需治疗人数(NNT),表示为预防一例额外不良事件平均必须治疗的患者数量,且等于1/(πC - πT)。由于总体值πC和πT未知,所以使用样本比例(率)pC和pT作为估计值。基于样本的估计器的精度通常用置信区间来表示。然而,估计器的准确性(即其偏差)常常被忽视。本研究的目的是检验偏差程度。通过基于二项式定理的精确计算,我们确定了在pC不等于pT条件下NNT估计值的偏差,以及针对各种样本量(n = 10、20、30、40、50、100)和总体参数(0.01≤πC≤0.9;0.01≤πC - πT≤0.8)的NNT调整估计器的偏差。偏差的大小和非单调性归因于NNT尺度。对于某些研究,可使用本分析中的表格结果来近似调整估计器的偏差。