Suppr超能文献

在逻辑回归分析中估计调整后的需治疗人数(NNT)指标。

Estimating adjusted NNT measures in logistic regression analysis.

作者信息

Bender Ralf, Kuss Oliver, Hildebrandt Mandy, Gehrmann Ulrich

机构信息

Department of Medical Biometry, Institute for Quality and Efficiency in Health Care (IQWiG), Cologne, Germany.

出版信息

Stat Med. 2007 Dec 30;26(30):5586-95. doi: 10.1002/sim.3061.

Abstract

The number needed to treat (NNT) is a popular measure to describe the absolute effect of a new treatment compared with a standard treatment or placebo in clinical trials with binary outcome. For use of NNT measures in epidemiology to compare exposed and unexposed subjects, the terms 'number needed to be exposed' (NNE) and 'exposure impact number' (EIN) have been proposed. Additionally, in the framework of logistic regression a method was derived to perform point and interval estimation of NNT measures with adjustment for confounding by using the adjusted odds ratio (OR approach). In this paper, a new method is proposed which is based upon the average risk difference over the observed confounder values (ARD approach). A decision has to be made, whether the effect of allocating an exposure to unexposed persons or the effect of removing an exposure from exposed persons should be described. We use the term NNE for the first and the term EIN for the second situation. NNE is the average number of unexposed persons needed to be exposed to observe one extra case; EIN is the average number of exposed persons among one case can be attributed to the exposure. By means of simulations it is shown that the ARD approach is better than the OR approach in terms of bias and coverage probability, especially if the confounder distribution is wide. The proposed method is illustrated by application to data of a cohort study investigating the effect of smoking on coronary heart disease.

摘要

在具有二元结局的临床试验中,需治疗人数(NNT)是一种常用的指标,用于描述新治疗与标准治疗或安慰剂相比的绝对疗效。为了在流行病学中使用NNT指标来比较暴露组和非暴露组受试者,有人提出了“需暴露人数”(NNE)和“暴露影响数”(EIN)这两个术语。此外,在逻辑回归框架下,还推导了一种方法,通过使用调整后的优势比(OR方法)对混杂因素进行调整,来对NNT指标进行点估计和区间估计。在本文中,我们提出了一种基于观察到的混杂因素值的平均风险差的新方法(ARD方法)。必须做出一个决定,即应该描述将暴露分配给未暴露者的效果,还是从暴露者中去除暴露的效果。对于第一种情况我们使用术语NNE,对于第二种情况我们使用术语EIN。NNE是指需要暴露多少未暴露者才能观察到一例额外病例;EIN是指在一例病例中可归因于暴露的暴露者的平均数量。通过模拟表明,在偏差和覆盖概率方面,ARD方法优于OR方法,尤其是在混杂因素分布较广的情况下。通过将该方法应用于一项队列研究的数据,该研究调查了吸烟对冠心病的影响,来说明所提出的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验