Suppr超能文献

心脏线粒体的NADH:泛醌氧化还原酶产生超氧阴离子自由基。

Generation of superoxide-radical by the NADH:ubiquinone oxidoreductase of heart mitochondria.

作者信息

Vinogradov A D, Grivennikova V G

机构信息

Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow 119992, Russia.

出版信息

Biochemistry (Mosc). 2005 Feb;70(2):120-7. doi: 10.1007/s10541-005-0090-7.

Abstract

Besides major NADH-, succinate-, and other substrate oxidase reactions resulting in four-electron reduction of oxygen to water, the mitochondrial respiratory chain catalyzes one-electron reduction of oxygen to superoxide radical O(2)(-.) followed by formation of hydrogen peroxide. In this paper the superoxide generation by Complex I in tightly coupled bovine heart submitochondrial particles is quantitatively characterized. The rate of superoxide formation during Deltamu(H(+))-controlled respiration with succinate depends linearly on oxygen concentration and contributes approximately 0.4% of the overall oxidase activity at saturating (0.25 mM) oxygen. The major part of one-electron oxygen reduction during succinate oxidation (approximately 80%) proceeds via Complex I at the expense of its Deltamu(H(+))-dependent reduction (reverse electron transfer). At saturating NADH the rate of O(2)(-.) formation is substantially smaller than that with succinate as the substrate. In contrast to NADH oxidase, the rate-substrate concentration dependence for the superoxide production shows a maximum at low (approximately 50 microM) concentrations of NADH. NAD+ and NADH inhibit the succinate-supported superoxide generation. Deactivation of Complex I results in almost complete loss of its NADH-ubiquinone reductase activity and in increase in NADH-dependent superoxide generation. A model is proposed according to which complex I has two redox active nucleotide binding sites. One site (F) serves as an entry for the NADH oxidation and the other one (R) serves as an exit during either the succinate-supported NAD+ reduction or superoxide generation or NADH-ferricyanide reductase reaction.

摘要

除了主要的NADH、琥珀酸和其他底物氧化酶反应导致氧气四电子还原为水外,线粒体呼吸链还催化氧气单电子还原为超氧自由基O₂⁻·,随后生成过氧化氢。本文对紧密偶联的牛心亚线粒体颗粒中复合物I产生超氧的过程进行了定量表征。在由Δμ(H⁺)控制的琥珀酸呼吸过程中,超氧形成的速率与氧气浓度呈线性关系,在饱和(0.25 mM)氧气条件下,约占总氧化酶活性的0.4%。琥珀酸氧化过程中单电子氧还原的主要部分(约80%)通过复合物I进行,以其依赖于Δμ(H⁺)的还原(逆向电子传递)为代价。在饱和NADH条件下,O₂⁻·形成的速率远低于以琥珀酸为底物时的速率。与NADH氧化酶不同,超氧产生的速率-底物浓度依赖性在低(约50 μM)浓度的NADH时出现最大值。NAD⁺和NADH抑制琥珀酸支持的超氧生成。复合物I的失活导致其NADH-泛醌还原酶活性几乎完全丧失,并使NADH依赖性超氧生成增加。提出了一个模型,根据该模型,复合物I有两个氧化还原活性核苷酸结合位点。一个位点(F)作为NADH氧化的入口,另一个位点(R)在琥珀酸支持的NAD⁺还原、超氧生成或NADH-铁氰化物还原酶反应过程中作为出口。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验