通过对人脑皮层的特定频率刺激来调节远程连接模式。

Modulation of Long-Range Connectivity Patterns via Frequency-Specific Stimulation of Human Cortex.

机构信息

Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; Department of Cognitive Neurology and Department of Neurology, University Medical Centre, University of Goettingen, Goettingen 37075, Germany.

Medical Research Council Brain Network Dynamics Unit and Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.

出版信息

Curr Biol. 2017 Oct 9;27(19):3061-3068.e3. doi: 10.1016/j.cub.2017.08.075. Epub 2017 Sep 28.

Abstract

There is increasing interest in how the phase of local oscillatory activity within a brain area determines the long-range functional connectivity of that area. For example, increasing convergent evidence from a range of methodologies suggests that beta (20 Hz) oscillations may play a vital role in the function of the motor system [1-5]. The "communication through coherence" hypothesis posits that the precise phase of coherent oscillations in network nodes is a determinant of successful communication between them [6, 7]. Here we set out to determine whether oscillatory activity in the beta band serves to support this theory within the cortical motor network in vivo. We combined non-invasive transcranial alternating-current stimulation (tACS) [8-12] with resting-state functional MRI (fMRI) [13] to follow both changes in local activity and long-range connectivity, determined by inter-areal blood-oxygen-level-dependent (BOLD) signal correlation, as a proxy for communication in the human cortex. Twelve healthy subjects participated in three fMRI scans with 20 Hz, 5 Hz, or sham tACS applied separately on each scan. Transcranial magnetic stimulation (TMS) at beta frequency has previously been shown to increase local activity in the beta band [14] and to modulate long-range connectivity within the default mode network [15]. We demonstrated that beta-frequency tACS significantly changed the connectivity pattern of the stimulated primary motor cortex (M1), without changing overall local activity or network connectivity. This finding is supported by a simple phase-precession model, which demonstrates the plausibility of the results and provides emergent predictions that are consistent with our empirical findings. These findings therefore inform our understanding of how local oscillatory activity may underpin network connectivity.

摘要

人们越来越关注大脑区域内局部振荡活动的相位如何决定该区域的长程功能连接。例如,越来越多的来自各种方法的证据表明,β(20 Hz)振荡可能在运动系统的功能中发挥至关重要的作用[1-5]。“通过相干性进行通讯”的假说认为,网络节点中相干振荡的精确相位是它们之间成功通讯的决定因素[6,7]。在这里,我们旨在确定β带中的振荡活动是否在活体皮质运动网络中支持该理论。我们结合了非侵入性经颅交流电刺激(tACS)[8-12]和静息状态功能磁共振成像(fMRI)[13],以跟踪局部活动和长程连接的变化,后者通过区域间血氧水平依赖(BOLD)信号相关性来确定,作为人类皮质中通讯的替代指标。12 名健康受试者参与了三次 fMRI 扫描,分别在每次扫描时应用 20 Hz、5 Hz 或假 tACS。先前的研究表明,β 频率的经颅磁刺激(TMS)[14]可以增加β 带中的局部活动,并调节默认模式网络内的长程连接[15]。我们证明了β 频率 tACS 显著改变了刺激的初级运动皮层(M1)的连接模式,而不改变整体局部活动或网络连接。这一发现得到了一个简单的相位进动模型的支持,该模型证明了结果的合理性,并提供了与我们的经验发现一致的新兴预测。因此,这些发现为我们理解局部振荡活动如何支持网络连接提供了信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aeb2/5640512/0c394f6ffa9b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索