Suppr超能文献

色氨酸笼的环形排列:添加疏水钉后的折叠拯救。

Circular Permutation of the Trp-cage: Fold Rescue upon Addition of a Hydrophobic Staple.

作者信息

Byrne Aimee, Kier Brandon L, Williams D V, Scian Michele, Andersen Niels H

机构信息

Department of Chemistry, University of Washington Seattle, Washington, 98195, USA

出版信息

RSC Adv. 2013 Nov 21;2013(43). doi: 10.1039/C3RA43674H.

Abstract

The Trp-cage, at 20 residues in length, is generally acknowledged as the smallest fully protein-like folding motif. Linking the termini by a two-residue unit and excising one residue affords circularly permuted sequences that adopt the same structure. This represents the first successful circular permutation of any fold of less than 50-residue length. As was observed for the original topology, a hydrophobic staple near the chain termini is required for enhanced fold stability.

摘要

由20个残基组成的色氨酸笼通常被认为是最小的完全类似蛋白质的折叠基序。通过一个双残基单元连接末端并切除一个残基可得到采用相同结构的环形排列序列。这代表了长度小于50个残基的任何折叠的首次成功环形排列。正如在原始拓扑结构中所观察到的,链末端附近的疏水钉对于增强折叠稳定性是必需的。

相似文献

2
Optimizing the fold stability of the circularly permuted Trp-cage motif.
Biopolymers. 2019 Dec;110(12):e23327. doi: 10.1002/bip.23327. Epub 2019 Sep 3.
3
Circular permutation of granulocyte colony-stimulating factor.
Biochemistry. 1999 Apr 6;38(14):4553-63. doi: 10.1021/bi982224o.
4
Role of tryptophan side chain dynamics on the Trp-cage mini-protein folding studied by molecular dynamics simulations.
PLoS One. 2014 Feb 7;9(2):e88383. doi: 10.1371/journal.pone.0088383. eCollection 2014.
5
Circular permutation of T4 lysozyme.
Biochemistry. 1993 Nov 23;32(46):12311-8. doi: 10.1021/bi00097a006.
7
Ab initio folding of a trefoil-fold motif reveals structural similarity with a β-propeller blade motif.
Protein Sci. 2020 May;29(5):1172-1185. doi: 10.1002/pro.3850. Epub 2020 Mar 25.
8
Diversification of Protein Cage Structure Using Circularly Permuted Subunits.
J Am Chem Soc. 2018 Jan 17;140(2):558-561. doi: 10.1021/jacs.7b10513. Epub 2018 Jan 2.
9
Folding of circular and permuted chymotrypsin inhibitor 2: retention of the folding nucleus.
Biochemistry. 1998 Jun 2;37(22):8139-46. doi: 10.1021/bi980250g.
10
Reversing the typical pH stability profile of the Trp-cage.
Biopolymers. 2019 Mar;110(3):e23260. doi: 10.1002/bip.23260. Epub 2019 Feb 19.

引用本文的文献

2
Interplay between C Methylation and C Stereochemistry in the Folding Energetics of a Helix-Rich Miniprotein.
Chembiochem. 2025 Mar 15;26(6):e202401022. doi: 10.1002/cbic.202401022. Epub 2025 Jan 24.
3
Design and Engineering of Miniproteins.
ACS Bio Med Chem Au. 2022 Apr 28;2(4):316-327. doi: 10.1021/acsbiomedchemau.2c00008. eCollection 2022 Aug 17.
4
Computational Modeling of the Thermodynamics of the Mesophilic and Thermophilic Mutants of Trp-Cage Miniprotein.
ACS Omega. 2022 Apr 12;7(16):13448-13454. doi: 10.1021/acsomega.1c06206. eCollection 2022 Apr 26.
5
Stapled Peptides Inhibitors: A New Window for Target Drug Discovery.
Comput Struct Biotechnol J. 2019 Feb 19;17:263-281. doi: 10.1016/j.csbj.2019.01.012. eCollection 2019.
9
Folding dynamics and pathways of the trp-cage miniproteins.
Biochemistry. 2014 Sep 30;53(38):6011-21. doi: 10.1021/bi501021r. Epub 2014 Sep 16.
10
Circular permutation of a WW domain: folding still occurs after excising the turn of the folding-nucleating hairpin.
J Am Chem Soc. 2014 Jan 15;136(2):741-9. doi: 10.1021/ja410824x. Epub 2014 Jan 3.

本文引用的文献

1
Chemical Synthesis of a Circular Protein Domain: Evidence for Folding-Assisted Cyclization.
Angew Chem Int Ed Engl. 1998 Feb 16;37(3):347-349. doi: 10.1002/(SICI)1521-3773(19980216)37:3<347::AID-ANIE347>3.0.CO;2-5.
2
Using D-Amino Acids to Delineate the Mechanism of Protein Folding: Application to Trp-cage.
Chem Phys. 2013 Aug 30;422. doi: 10.1016/j.chemphys.2013.01.021.
3
Structural insights into the Trp-cage folding intermediate formation.
Chemistry. 2013 Feb 18;19(8):2628-40. doi: 10.1002/chem.201203764. Epub 2013 Jan 14.
4
Crystal and NMR structures of a Trp-cage mini-protein benchmark for computational fold prediction.
Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12521-5. doi: 10.1073/pnas.1121421109. Epub 2012 Jul 16.
5
Computational design of thermostabilizing D-amino acid substitutions.
J Am Chem Soc. 2011 Nov 23;133(46):18750-9. doi: 10.1021/ja205609c. Epub 2011 Oct 27.
6
Achieving secondary structural resolution in kinetic measurements of protein folding: a case study of the folding mechanism of Trp-cage.
Angew Chem Int Ed Engl. 2011 Nov 11;50(46):10884-7. doi: 10.1002/anie.201104085. Epub 2011 Sep 29.
7
Cooperativity network of Trp-cage miniproteins: probing salt-bridges.
J Pept Sci. 2011 Sep;17(9):610-9. doi: 10.1002/psc.1377. Epub 2011 Jun 6.
8
Four small puzzles that Rosetta doesn't solve.
PLoS One. 2011;6(5):e20044. doi: 10.1371/journal.pone.0020044. Epub 2011 May 20.
10
Optimal salt bridge for Trp-cage stabilization.
Biochemistry. 2011 Feb 22;50(7):1143-52. doi: 10.1021/bi101555y. Epub 2011 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验