Suppr超能文献

基于核糖体DNA内转录间隔区序列,采用诊断性PCR和PCR-RFLP技术鉴定伊贝母。

Identification of Fritillaria pallidiflora using diagnostic PCR and PCR-RFLP based on nuclear ribosomal DNA internal transcribed spacer sequences.

作者信息

Wang Chong-Zhi, Li Ping, Ding Jia-Yi, Jin Guo-Qian, Yuan Chun-Su

机构信息

Key Laboratory of Modern Traditional Chinese Medicines, and Department of Pharmacognosy, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu Province, PR China.

出版信息

Planta Med. 2005 Apr;71(4):384-6. doi: 10.1055/s-2005-864112.

Abstract

Fritillaria pallidiflora Schrenk (Liliaceae) is a commonly used antitussive herb. There are 9 species of Fritillaria recorded as herbal drugs in the Chinese Pharmacopoeia. The other species are often marketed as F. pallidiflora, and thus, the therapeutic effects of F. pallidiflora are not achieved. Methods to distinguish F. pallidiflora from the 8 other species of Fritillaria are limited by the current morphological and chemical methods. In this study, we report two molecular authentication methods based on the sequences of nuclear ribosomal DNA internal transcribed spacer (nrDNA ITS) regions. For diagnostic PCR, we designed a pair of species-specific primers to authenticate F. pallidiflora. The PCR program consisted of only two steps for every repeated cycle. For PCR-RFLP, we identified a distinctive site which can be recognized by the restriction endonuclease Eco81I in the nrDNA ITS1 region of F. pallidiflora. PCR-RFLP analysis was established to differentiate F. pallidiflora from the other species of Fritillaria. These methods provide effective and accurate identification of F. pallidiflora.

摘要

伊犁贝母(百合科)是一种常用的止咳草药。《中国药典》中记载有9种贝母作为草药。其他种类常作为伊犁贝母出售,因此无法达到伊犁贝母的治疗效果。目前通过形态学和化学方法区分伊犁贝母与其他8种贝母的方法有限。在本研究中,我们报道了基于核糖体DNA内转录间隔区(nrDNA ITS)序列的两种分子鉴定方法。对于诊断性PCR,我们设计了一对物种特异性引物来鉴定伊犁贝母。每个重复循环的PCR程序仅由两步组成。对于PCR-RFLP,我们在伊犁贝母nrDNA ITS1区域鉴定了一个可被限制性内切酶Eco81I识别的独特位点。建立了PCR-RFLP分析方法以区分伊犁贝母与其他贝母种类。这些方法为伊犁贝母提供了有效且准确的鉴定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验