Suppr超能文献

聚二甲基硅氧烷上的原位寡核苷酸合成:用于微阵列制造的柔性基底

In situ oligonucleotide synthesis on poly(dimethylsiloxane): a flexible substrate for microarray fabrication.

作者信息

Moorcroft Matthew J, Meuleman Wouter R A, Latham Steven G, Nicholls Thomas J, Egeland Ryan D, Southern Edwin M

机构信息

Oxamer, Oxford Gene Technology Ltd Sandy Lane, Yarnton, Oxford OX5 1PF, UK.

出版信息

Nucleic Acids Res. 2005 May 3;33(8):e75. doi: 10.1093/nar/gni075.

Abstract

In this paper, we demonstrate in situ synthesis of oligonucleotide probes on poly(dimethylsiloxane) (PDMS) microchannels through use of conventional phosphoramidite chemistry. PDMS polymer was moulded into a series of microchannels using standard soft lithography (micro-moulding), with dimensions <100 microm. The surface of the PDMS was derivatized by exposure to ultraviolet/ozone followed by vapour phase deposition of glycidoxypropyltrimethoxysilane and reaction with poly(ethylene glycol) spacer, resulting in a reactive surface for oligonucleotide coupling. High, reproducible yields were achieved for both 6mer and 21mer probes as assessed by hybridization to fluorescent oligonucleotides. Oligonucleotide surface density was comparable with that obtained on glass substrates. These results suggest PDMS as a stable and flexible alternative to glass as a suitable substrate in the fabrication and synthesis of DNA microarrays.

摘要

在本文中,我们通过使用传统的亚磷酰胺化学方法,证明了在聚二甲基硅氧烷(PDMS)微通道上原位合成寡核苷酸探针。使用标准软光刻技术(微成型)将PDMS聚合物模制成一系列微通道,其尺寸小于100微米。通过暴露于紫外光/臭氧对PDMS表面进行衍生化,随后气相沉积环氧丙氧基丙基三甲氧基硅烷并与聚乙二醇间隔物反应,从而产生用于寡核苷酸偶联的反应性表面。通过与荧光寡核苷酸杂交评估,6聚体和21聚体探针均获得了高且可重复的产率。寡核苷酸表面密度与在玻璃基板上获得的相当。这些结果表明,在DNA微阵列的制造和合成中,PDMS作为一种稳定且灵活的替代玻璃的合适基板。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53fa/1088307/9379cb7547ad/gni075f1.jpg

相似文献

2
Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels.
Anal Chem. 2006 Aug 1;78(15):5543-51. doi: 10.1021/ac060605z.
3
Poly(oxyethylene) based surface coatings for poly(dimethylsiloxane) microchannels.
Langmuir. 2005 Aug 2;21(16):7551-7. doi: 10.1021/la0510432.
4
Components for integrated poly(dimethylsiloxane) microfluidic systems.
Electrophoresis. 2002 Oct;23(20):3461-73. doi: 10.1002/1522-2683(200210)23:20<3461::AID-ELPS3461>3.0.CO;2-8.
6
In situ oligonucleotide synthesis on carbon materials: stable substrates for microarray fabrication.
Nucleic Acids Res. 2008 Jan;36(1):e7. doi: 10.1093/nar/gkm1103. Epub 2007 Dec 15.
7
Leakage-free bonding of porous membranes into layered microfluidic array systems.
Anal Chem. 2007 May 1;79(9):3504-8. doi: 10.1021/ac062118p. Epub 2007 Mar 28.
9
Stabilization of two-phase octanol/water flows inside poly(dimethylsiloxane) microchannels using polymer coatings.
Anal Bioanal Chem. 2006 Aug;385(8):1376-83. doi: 10.1007/s00216-006-0526-y. Epub 2006 Jun 14.

引用本文的文献

1
Development of a clinical microarray system for genetic analysis screening.
Pract Lab Med. 2022 Dec 23;33:e00306. doi: 10.1016/j.plabm.2022.e00306. eCollection 2023 Jan.
2
Uncertainties in synthetic DNA-based data storage.
Nucleic Acids Res. 2021 Jun 4;49(10):5451-5469. doi: 10.1093/nar/gkab230.
5
An open-chamber flow-focusing device for focal stimulation of micropatterned cells.
Biomicrofluidics. 2016 Apr 12;10(2):024122. doi: 10.1063/1.4946801. eCollection 2016 Mar.
6
Immobilization techniques for microarray: challenges and applications.
Sensors (Basel). 2014 Nov 25;14(12):22208-29. doi: 10.3390/s141222208.
7
Microfluidic Reactor Array Device for Massively Parallel In-situ Synthesis of Oligonucleotides.
Sens Actuators B Chem. 2009 Jul;140(2):473-481. doi: 10.1016/j.snb.2009.04.071.
8
Grafting of antibodies inside integrated microfluidic-microoptic devices by means of automated microcontact printing.
Sens Actuators B Chem. 2009 Jun 18;140(1):278-286. doi: 10.1016/j.snb.2009.03.030.
9
The incredible shrinking world of DNA microarrays.
Mol Biosyst. 2008 Jul;4(7):726-32. doi: 10.1039/b706237k. Epub 2008 Apr 17.
10
In situ oligonucleotide synthesis on carbon materials: stable substrates for microarray fabrication.
Nucleic Acids Res. 2008 Jan;36(1):e7. doi: 10.1093/nar/gkm1103. Epub 2007 Dec 15.

本文引用的文献

1
Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane).
Anal Chem. 1998 Dec 1;70(23):4974-84. doi: 10.1021/ac980656z.
2
How to make a DNA chip.
Angew Chem Int Ed Engl. 2002 Apr 15;41(8):1276-89. doi: 10.1002/1521-3773(20020415)41:8<1276::aid-anie1276>3.0.co;2-2.
5
Microarray-based comparative genomic hybridization and its applications in human genetics.
Clin Genet. 2004 Dec;66(6):488-95. doi: 10.1111/j.1399-0004.2004.00322.x.
6
In situ synthesis of oligonucleotide microarrays.
Biopolymers. 2004 Apr 5;73(5):579-96. doi: 10.1002/bip.20005.
7
Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices.
Anal Chem. 2003 Dec 1;75(23):6544-54. doi: 10.1021/ac0346712.
8
Surface modification of poly(dimethylsiloxane) microchannels.
Electrophoresis. 2003 Nov;24(21):3607-19. doi: 10.1002/elps.200305627.
9
Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies.
Electrophoresis. 2003 Nov;24(21):3563-76. doi: 10.1002/elps.200305584.
10
Integrated nanoliter systems.
Nat Biotechnol. 2003 Oct;21(10):1179-83. doi: 10.1038/nbt871.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验