Suppr超能文献

生长丝状伪足中肌球蛋白力产生器的分子计数

Molecular counting of myosin force generators in growing filopodia.

作者信息

Fitz Gillian N, Tyska Matthew J

机构信息

Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.

Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.

出版信息

J Biol Chem. 2024 Dec;300(12):107934. doi: 10.1016/j.jbc.2024.107934. Epub 2024 Oct 28.

Abstract

Animal cells build actin-based surface protrusions to enable diverse biological activities, ranging from cell motility to mechanosensation to solute uptake. Long-standing models of protrusion growth suggest that actin filament polymerization provides the primary mechanical force for "pushing" the plasma membrane outward at the distal tip. Expanding on these actin-centric models, our recent studies used a chemically inducible system to establish that plasma membrane-bound myosin motors, which are abundant in protrusions and accumulate at the distal tips, can also power robust filopodial growth. How protrusion resident myosins coordinate with actin polymerization to drive elongation remains unclear, in part because the number of force generators and thus, the scale of their mechanical contributions remain undefined. To address this gap, we leveraged the SunTag system to count membrane-bound myosin motors in actively growing filopodia. Using this approach, we found that the number of myosins is log-normally distributed with a mean of 12.0 ± 2.5 motors [GeoMean ± GeoSD] per filopodium. Together with unitary force values and duty ratio estimates derived from biophysical studies for the motor used in these experiments, we calculate that a distal tip population of myosins could generate a time averaged force of ∼tens of pN to elongate filopodia. This range is comparable to the expected force production of actin polymerization in this system, a point that necessitates revision of popular physical models for protrusion growth.

摘要

动物细胞构建基于肌动蛋白的表面突起,以实现从细胞运动到机械感知再到溶质摄取等多种生物活动。长期以来的突起生长模型表明,肌动蛋白丝聚合为在远端将质膜向外“推”提供了主要机械力。在这些以肌动蛋白为中心的模型基础上,我们最近的研究使用化学诱导系统确定,质膜结合的肌球蛋白马达在突起中丰富并聚集在远端,也可以驱动强劲的丝状伪足生长。突起中的肌球蛋白如何与肌动蛋白聚合协调以驱动伸长仍不清楚,部分原因是力产生器的数量以及因此它们的机械贡献规模仍未确定。为了填补这一空白,我们利用SunTag系统对活跃生长的丝状伪足中的膜结合肌球蛋白马达进行计数。使用这种方法,我们发现肌球蛋白的数量呈对数正态分布,每个丝状伪足平均有12.0 ± 2.5个马达[几何均值±几何标准差]。结合从这些实验中使用的马达的生物物理研究得出的单位力值和占空比估计,我们计算出远端的肌球蛋白群体可以产生约数十皮牛的时间平均力来延长丝状伪足。这个范围与该系统中肌动蛋白聚合的预期力产生相当,这一点需要对突起生长的流行物理模型进行修正。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29df/11648217/92257765ce97/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验