Suppr超能文献

弱力会使片足前缘的突出作用停滞。

Weak force stalls protrusion at the leading edge of the lamellipodium.

作者信息

Bohnet Sophie, Ananthakrishnan Revathi, Mogilner Alex, Meister Jean-Jacques, Verkhovsky Alexander B

机构信息

Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

出版信息

Biophys J. 2006 Mar 1;90(5):1810-20. doi: 10.1529/biophysj.105.064600. Epub 2005 Dec 2.

Abstract

Protrusion, the first step of cell migration, is driven by actin polymerization coupled to adhesion at the cell's leading edge. Polymerization and adhesive forces have been estimated, but the net protrusion force has not been measured accurately. We arrest the leading edge of a moving fish keratocyte with a hydrodynamic load generated by a fluid flow from a micropipette. The flow arrests protrusion locally as the cell approaches the pipette, causing an arc-shaped indentation and upward folding of the leading edge. The effect of the flow is reversible upon pipette removal and dependent on the flow direction, suggesting that it is a direct effect of the external force rather than a regulated cellular response. Modeling of the fluid flow gives a surprisingly low value for the arresting force of just a few piconewtons per micrometer. Enhanced phase contrast, fluorescence, and interference reflection microscopy suggest that the flow does not abolish actin polymerization and does not disrupt the adhesions formed before the arrest but rather interferes with weak nascent adhesions at the very front of the cell. We conclude that a weak external force is sufficient to reorient the growing actin network at the leading edge and to stall the protrusion.

摘要

细胞迁移的第一步是突出,它由肌动蛋白聚合驱动,并与细胞前沿的黏附作用相关联。已经对聚合和黏附力进行了估算,但净突出力尚未得到精确测量。我们利用微量移液器产生的流体流动所产生的流体动力负载,阻止游动的鱼类角膜细胞的前沿。当细胞靠近移液器时,流体流动会局部阻止突出,导致前沿出现弧形凹陷并向上折叠。移液器移除后,流体流动的影响是可逆的,并且取决于流动方向,这表明它是外力的直接作用,而不是一种受调控的细胞反应。对流体流动的建模得出了一个令人惊讶的低值,即每微米仅几皮牛顿的阻止力。增强相衬显微镜、荧光显微镜和干涉反射显微镜表明,流体流动并没有消除肌动蛋白聚合,也没有破坏在阻止之前形成的黏附,而是干扰了细胞最前端微弱的新生黏附。我们得出结论,微弱的外力足以重新定向前沿正在生长的肌动蛋白网络并使突出停滞。

相似文献

1
Weak force stalls protrusion at the leading edge of the lamellipodium.
Biophys J. 2006 Mar 1;90(5):1810-20. doi: 10.1529/biophysj.105.064600. Epub 2005 Dec 2.
2
Direct measurement of the lamellipodial protrusive force in a migrating cell.
J Cell Biol. 2006 Sep 11;174(6):767-72. doi: 10.1083/jcb.200601159.
3
The stochastic dynamics of filopodial growth.
Biophys J. 2008 May 15;94(10):3839-52. doi: 10.1529/biophysj.107.123778. Epub 2008 Jan 30.
4
Membrane tension controls adhesion positioning at the leading edge of cells.
J Cell Biol. 2017 Sep 4;216(9):2959-2977. doi: 10.1083/jcb.201611117. Epub 2017 Jul 7.
5
Nascent adhesions shorten the period of lamellipodium protrusion through the Brownian ratchet mechanism.
Mol Biol Cell. 2023 Nov 1;34(12):ar115. doi: 10.1091/mbc.E23-08-0314. Epub 2023 Sep 6.
6
The physics of filopodial protrusion.
Biophys J. 2005 Aug;89(2):782-95. doi: 10.1529/biophysj.104.056515. Epub 2005 May 6.
7
Model of polarization and bistability of cell fragments.
Biophys J. 2007 Dec 1;93(11):3811-9. doi: 10.1529/biophysj.107.110411. Epub 2007 Aug 17.
8
The comings and goings of actin: coupling protrusion and retraction in cell motility.
Curr Opin Cell Biol. 2005 Oct;17(5):517-23. doi: 10.1016/j.ceb.2005.08.004.
9
Membrane waves driven by actin and Myosin.
Phys Rev Lett. 2007 Apr 20;98(16):168103. doi: 10.1103/PhysRevLett.98.168103.
10
Analysis of actin dynamics at the leading edge of crawling cells: implications for the shape of keratocyte lamellipodia.
Eur Biophys J. 2003 Sep;32(6):563-77. doi: 10.1007/s00249-003-0300-4. Epub 2003 May 9.

引用本文的文献

1
The Role of Mechanotransduction in Contact Inhibition of Locomotion and Proliferation.
Int J Mol Sci. 2024 Feb 10;25(4):2135. doi: 10.3390/ijms25042135.
2
Keratocytes migrate against flow with a roly-poly-like mechanism.
Proc Natl Acad Sci U S A. 2022 Nov 29;119(48):e2210379119. doi: 10.1073/pnas.2210379119. Epub 2022 Nov 21.
5
Leukocyte transmigration and longitudinal forward-thrusting force in a microfluidic Transwell device.
Biophys J. 2021 Jun 1;120(11):2205-2221. doi: 10.1016/j.bpj.2021.03.037. Epub 2021 Apr 8.
6
A Bistable Mechanism Mediated by Integrins Controls Mechanotaxis of Leukocytes.
Biophys J. 2020 Feb 4;118(3):565-577. doi: 10.1016/j.bpj.2019.12.013. Epub 2019 Dec 18.
7
Mechanisms and in vivo functions of contact inhibition of locomotion.
Nat Rev Mol Cell Biol. 2017 Jan;18(1):43-55. doi: 10.1038/nrm.2016.118. Epub 2016 Sep 28.
8
Branching and capping determine the force-velocity relationships of branching actin networks.
Phys Biol. 2013 Feb;10(1):016004. doi: 10.1088/1478-3975/10/1/016004. Epub 2013 Jan 28.
9
The elementary events underlying force generation in neuronal lamellipodia.
Sci Rep. 2011;1:153. doi: 10.1038/srep00153. Epub 2011 Nov 11.
10
Actin filament elasticity and retrograde flow shape the force-velocity relation of motile cells.
Biophys J. 2012 Jan 18;102(2):287-95. doi: 10.1016/j.bpj.2011.12.023.

本文引用的文献

1
Tracking retrograde flow in keratocytes: news from the front.
Mol Biol Cell. 2005 Mar;16(3):1223-31. doi: 10.1091/mbc.e04-07-0615. Epub 2005 Jan 5.
3
Hierarchical assembly of cell-matrix adhesion complexes.
Biochem Soc Trans. 2004 Jun;32(Pt3):416-20. doi: 10.1042/BST0320416.
4
Forces generated during actin-based propulsion: a direct measurement by micromanipulation.
Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):5992-7. doi: 10.1073/pnas.0307704101. Epub 2004 Apr 12.
5
Rho mediates the shear-enhancement of endothelial cell migration and traction force generation.
Biophys J. 2004 Apr;86(4):2558-65. doi: 10.1016/S0006-3495(04)74311-8.
6
Illuminating adhesion complexes in migrating cells: moving toward a bright future.
Curr Opin Cell Biol. 2003 Oct;15(5):614-20. doi: 10.1016/s0955-0674(03)00105-4.
7
Orientational order of the lamellipodial actin network as demonstrated in living motile cells.
Mol Biol Cell. 2003 Nov;14(11):4667-75. doi: 10.1091/mbc.e02-10-0630. Epub 2003 Sep 17.
8
Polymer motors: pushing out the front and pulling up the back.
Curr Biol. 2003 Sep 16;13(18):R721-33. doi: 10.1016/j.cub.2003.08.050.
9
Analysis of actin dynamics at the leading edge of crawling cells: implications for the shape of keratocyte lamellipodia.
Eur Biophys J. 2003 Sep;32(6):563-77. doi: 10.1007/s00249-003-0300-4. Epub 2003 May 9.
10
Probing the cell peripheral movements by optical trapping technique.
Biophys J. 2003 Apr;84(4):2664-70. doi: 10.1016/S0006-3495(03)75072-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验