Suppr超能文献

新生哺乳动物脊髓中运动神经元的非胆碱能兴奋作用。

Noncholinergic excitatory actions of motoneurons in the neonatal mammalian spinal cord.

作者信息

Mentis George Z, Alvarez Francisco J, Bonnot Agnes, Richards Dannette S, Gonzalez-Forero David, Zerda Ricardo, O'Donovan Michael J

机构信息

Laboratory of Neural Control, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Proc Natl Acad Sci U S A. 2005 May 17;102(20):7344-9. doi: 10.1073/pnas.0502788102. Epub 2005 May 9.

Abstract

Mammalian spinal motoneurons are considered to be output elements of the spinal cord that generate exclusively cholinergic actions on Renshaw cells, their intraspinal synaptic targets. Here, we show that antidromic stimulation of motor axons evokes depolarizing monosynaptic potentials in Renshaw cells that are depressed, but not abolished, by cholinergic antagonists. This residual potential was abolished by 2-amino-5-phosphonovaleric acid and 6-cyano-7-nitroquinoxaline-2,3-dione. In the presence of cholinergic antagonists, motor axon stimulation triggered locomotor-like activity that was blocked by 2-amino-5-phosphonovaleric acid. Some cholinergic motoneuronal terminals on both Renshaw cells and motoneurons were enriched in glutamate, but none expressed vesicular glutamate transporters. Our results raise the possibility that motoneurons release an excitatory amino acid in addition to acetylcholine and that they may be more directly involved in the genesis of mammalian locomotion than previously believed.

摘要

哺乳动物脊髓运动神经元被认为是脊髓的输出元件,它们仅对其脊髓内突触靶点闰绍细胞产生胆碱能作用。在此,我们表明,对运动轴突进行逆向刺激会在闰绍细胞中诱发去极化单突触电位,胆碱能拮抗剂可使其受到抑制,但不会消除。这种残余电位可被2-氨基-5-磷酸戊酸和6-氰基-7-硝基喹喔啉-2,3-二酮消除。在存在胆碱能拮抗剂的情况下,运动轴突刺激触发了类似运动的活动,该活动可被2-氨基-5-磷酸戊酸阻断。闰绍细胞和运动神经元上的一些胆碱能运动神经元终末富含谷氨酸,但均未表达囊泡谷氨酸转运体。我们的结果提出了一种可能性,即运动神经元除了释放乙酰胆碱外,还释放一种兴奋性氨基酸,并且它们可能比以前认为的更直接地参与哺乳动物运动的产生。

相似文献

1
Noncholinergic excitatory actions of motoneurons in the neonatal mammalian spinal cord.
Proc Natl Acad Sci U S A. 2005 May 17;102(20):7344-9. doi: 10.1073/pnas.0502788102. Epub 2005 May 9.
2
Mechanisms of excitation of spinal networks by stimulation of the ventral roots.
Ann N Y Acad Sci. 2010 Jun;1198:63-71. doi: 10.1111/j.1749-6632.2010.05535.x.
4
Synaptic excitation of alpha-motoneurons by dorsal root afferents in the neonatal rat spinal cord.
J Neurophysiol. 1993 Jul;70(1):406-17. doi: 10.1152/jn.1993.70.1.406.
5
Involvement of GABA and glycine in recurrent inhibition of spinal motoneurons.
J Neurophysiol. 1992 Aug;68(2):397-406. doi: 10.1152/jn.1992.68.2.397.
8
Sensory modulation of locomotor-like membrane oscillations in Hb9-expressing interneurons.
J Neurophysiol. 2010 Jun;103(6):3407-23. doi: 10.1152/jn.00996.2009. Epub 2010 Apr 14.
9
Ethanol dual modulatory actions on spontaneous postsynaptic currents in spinal motoneurons.
J Neurophysiol. 2003 Feb;89(2):806-13. doi: 10.1152/jn.00614.2002.
10
Excitatory amino acid-mediated transmission of inspiratory drive to phrenic motoneurons.
J Neurophysiol. 1990 Aug;64(2):423-36. doi: 10.1152/jn.1990.64.2.423.

引用本文的文献

1
Synaptic imbalance and increased inhibition impair motor function in SMA.
Sci Adv. 2025 Sep 5;11(36):eadt4126. doi: 10.1126/sciadv.adt4126.
2
Episodic rhythmicity is generated by a distributed neural network in the developing mammalian spinal cord.
iScience. 2025 Feb 7;28(3):111971. doi: 10.1016/j.isci.2025.111971. eCollection 2025 Mar 21.
3
Synaptic imbalance and increased inhibition impair motor function in SMA.
bioRxiv. 2024 Sep 1:2024.08.30.610545. doi: 10.1101/2024.08.30.610545.
4
Spinal maps of motoneuron activity during human locomotion: neuromechanical considerations.
Front Physiol. 2024 Jul 23;15:1389436. doi: 10.3389/fphys.2024.1389436. eCollection 2024.
5
Spinal Interneurons: Diversity and Connectivity in Motor Control.
Annu Rev Neurosci. 2023 Jul 10;46:79-99. doi: 10.1146/annurev-neuro-083122-025325. Epub 2023 Feb 28.
6
7
Cholinergic Modulation of Locomotor Circuits in Vertebrates.
Int J Mol Sci. 2022 Sep 14;23(18):10738. doi: 10.3390/ijms231810738.
8
Motoneuronal Regulation of Central Pattern Generator and Network Function.
Adv Neurobiol. 2022;28:259-280. doi: 10.1007/978-3-031-07167-6_11.
9
Establishing the Molecular and Functional Diversity of Spinal Motoneurons.
Adv Neurobiol. 2022;28:3-44. doi: 10.1007/978-3-031-07167-6_1.
10
Neurotransmitter phenotype switching by spinal excitatory interneurons regulates locomotor recovery after spinal cord injury.
Nat Neurosci. 2022 May;25(5):617-629. doi: 10.1038/s41593-022-01067-9. Epub 2022 May 6.

本文引用的文献

1
Central effects of centripetal impulses in axons of spinal ventral roots.
J Neurophysiol. 1946 May;9:191-204. doi: 10.1152/jn.1946.9.3.191.
2
Release of acetylcholine at voluntary motor nerve endings.
J Physiol. 1936 May 4;86(4):353-80. doi: 10.1113/jphysiol.1936.sp003371.
3
Mammalian motor neurons corelease glutamate and acetylcholine at central synapses.
Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5245-9. doi: 10.1073/pnas.0501331102. Epub 2005 Mar 21.
6
Glutamate and acetylcholine corelease at developing synapses.
Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15488-93. doi: 10.1073/pnas.0404864101. Epub 2004 Oct 19.
7
Expression of vesicular glutamate transporters, VGLUT1 and VGLUT2, in cholinergic spinal motoneurons.
Eur J Neurosci. 2004 Oct;20(7):1752-60. doi: 10.1111/j.1460-9568.2004.03628.x.
8
Activity-dependent homeostatic specification of transmitter expression in embryonic neurons.
Nature. 2004 Jun 3;429(6991):523-30. doi: 10.1038/nature02518.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验