Brown S D, Huang J, Van der Ploeg L H
Department of Pharmacology, Columbia University, New York, New York 10032.
Mol Cell Biol. 1992 Jun;12(6):2644-52. doi: 10.1128/mcb.12.6.2644-2652.1992.
All eukaryotic protein-coding genes are believed to be transcribed by RNA polymerase (Pol) II. An exception may exist in the protozoan parasite Trypanosoma brucei, in which the genes encoding the variant surface glycoprotein (VSG) and procyclic acidic repetitive protein (PARP) are transcribed by an RNA polymerase that is resistant to the Pol II inhibitor alpha-amanitin. The PARP and VSG genes were proposed to be transcribed by Pol I (C. Shea, M. G.-S. Lee, and L. H. T. Van der Ploeg, Cell 50:603-612, 1987; G. Rudenko, M. G.-S. Lee, and L. H. T. Van der Ploeg, Nucleic Acids Res. 20:303-306, 1992), a suggestion that has been substantiated by the finding that trypanosomes can transcribe protein-coding genes by Pol I (G. Rudenko, H.-M. Chung, V. P. Pham, and L. H. T. Van der Ploeg, EMBO J. 10:3387-3397, 1991). We analyzed the sequence elements of the PARP promoter by linker scanning mutagenesis and compared the PARP promoter with Pol I, Pol II, and Pol III promoters. The PARP promoter appeared to be of limited complexity and contained at least two critical regions. The first was located adjacent to the transcription initiation site (nucleotides [nt] -69 to +12) and contained three discrete domains in which linker scanning mutants affected the transcriptional efficiency: at nt -69 to -56, -37 to -11, and -11 to +12. The second region was located between nt -140 and -131, and a third region may be located between nt -228 and -205. The nucleotide sequences of these elements, and their relative positioning with respect to the transcription initiation site did not resemble those of either Pol II or Pol III promoter elements, but rather reflected the organization of Pol I promoters in (i) similarity in the positioning of essential domains in the PARP promoter and Pol I promoter, (ii) strong sequence homology between the PARP core promoter element (nt -37 to -11) and identically positioned nucleotide sequences in the trypanosome rRNA and VSG gene promoters, and (iii) moderate effects on promoter activity of mutations around the transcription initiation site.
所有真核生物的蛋白质编码基因都被认为是由RNA聚合酶(Pol)II转录的。原生动物寄生虫布氏锥虫可能是个例外,其中编码可变表面糖蛋白(VSG)和前循环酸性重复蛋白(PARP)的基因是由一种对Pol II抑制剂α-鹅膏蕈碱具有抗性的RNA聚合酶转录的。有人提出PARP和VSG基因是由Pol I转录的(C. Shea、M. G.-S. Lee和L. H. T. Van der Ploeg,《细胞》50:603 - 612,1987;G. Rudenko、M. G.-S. Lee和L. H. T. Van der Ploeg,《核酸研究》20:303 - 306,1992),这一推测已被锥虫能通过Pol I转录蛋白质编码基因这一发现所证实(G. Rudenko、H.-M. Chung、V. P. Pham和L. H. T. Van der Ploeg,《欧洲分子生物学组织杂志》10:3387 - 3397,1991)。我们通过接头扫描诱变分析了PARP启动子的序列元件,并将PARP启动子与Pol I、Pol II和Pol III启动子进行了比较。PARP启动子的复杂性似乎有限,并且包含至少两个关键区域。第一个区域位于转录起始位点附近(核苷酸[nt] -69至 +12),包含三个离散结构域,接头扫描突变体在这些结构域中影响转录效率:在nt -69至 -56、-37至 -11和 -11至 +12处。第二个区域位于nt -140和 -131之间,第三个区域可能位于nt -228和 -205之间。这些元件的核苷酸序列,以及它们相对于转录起始位点的相对位置,既不像Pol II启动子元件,也不像Pol III启动子元件,而是反映了Pol I启动子的组织方式,具体表现为:(i)PARP启动子和Pol I启动子中必需结构域的定位相似;(ii)PARP核心启动子元件(nt -37至 -11)与锥虫rRNA和VSG基因启动子中位置相同的核苷酸序列之间有很强的序列同源性;(iii)转录起始位点周围的突变对启动子活性有适度影响。