Suppr超能文献

对从生物系统测量得到的周期性时间序列进行稳健检测。

Robust detection of periodic time series measured from biological systems.

作者信息

Ahdesmäki Miika, Lähdesmäki Harri, Pearson Ron, Huttunen Heikki, Yli-Harja Olli

机构信息

Institute of Signal Processing, Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland.

出版信息

BMC Bioinformatics. 2005 May 13;6:117. doi: 10.1186/1471-2105-6-117.

Abstract

BACKGROUND

Periodic phenomena are widespread in biology. The problem of finding periodicity in biological time series can be viewed as a multiple hypothesis testing of the spectral content of a given time series. The exact noise characteristics are unknown in many bioinformatics applications. Furthermore, the observed time series can exhibit other non-idealities, such as outliers, short length and distortion from the original wave form. Hence, the computational methods should preferably be robust against such anomalies in the data.

RESULTS

We propose a general-purpose robust testing procedure for finding periodic sequences in multiple time series data. The proposed method is based on a robust spectral estimator which is incorporated into the hypothesis testing framework using a so-called g-statistic together with correction for multiple testing. This results in a robust testing procedure which is insensitive to heavy contamination of outliers, missing-values, short time series, nonlinear distortions, and is completely insensitive to any monotone nonlinear distortions. The performance of the methods is evaluated by performing extensive simulations. In addition, we compare the proposed method with another recent statistical signal detection estimator that uses Fisher's test, based on the Gaussian noise assumption. The results demonstrate that the proposed robust method provides remarkably better robustness properties. Moreover, the performance of the proposed method is preferable also in the standard Gaussian case. We validate the performance of the proposed method on real data on which the method performs very favorably.

CONCLUSION

As the time series measured from biological systems are usually short and prone to contain different kinds of non-idealities, we are very optimistic about the multitude of possible applications for our proposed robust statistical periodicity detection method.

摘要

背景

周期性现象在生物学中广泛存在。在生物时间序列中寻找周期性的问题可以看作是对给定时间序列频谱内容的多重假设检验。在许多生物信息学应用中,确切的噪声特征是未知的。此外,观测到的时间序列可能表现出其他非理想特性,如异常值、长度较短以及与原始波形的失真。因此,计算方法最好能对数据中的此类异常具有鲁棒性。

结果

我们提出了一种用于在多个时间序列数据中寻找周期性序列的通用鲁棒检验程序。所提出的方法基于一种鲁棒频谱估计器,该估计器通过所谓的g统计量与多重检验校正一起纳入假设检验框架。这产生了一种鲁棒检验程序,它对异常值的严重污染、缺失值、短时间序列、非线性失真不敏感,并且对任何单调非线性失真完全不敏感。通过进行广泛的模拟来评估这些方法的性能。此外,我们将所提出的方法与另一种最近基于高斯噪声假设使用费舍尔检验的统计信号检测估计器进行比较。结果表明,所提出的鲁棒方法具有明显更好的鲁棒性。而且,在标准高斯情况下,所提出方法的性能也更优。我们在所提出方法表现非常良好的真实数据上验证了其性能。

结论

由于从生物系统测量的时间序列通常较短且容易包含各种非理想特性,我们对我们提出的鲁棒统计周期性检测方法的众多可能应用非常乐观。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eef7/1168888/6f1b13ba167a/1471-2105-6-117-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验