Suppr超能文献

利用透射电子显微镜对嗜水气单胞菌H16中聚羟基丁酸酯颗粒形成的动力学研究。

Kinetic studies of polyhydroxybutyrate granule formation in Wautersia eutropha H16 by transmission electron microscopy.

作者信息

Tian Jiamin, Sinskey Anthony J, Stubbe Joanne

机构信息

Department of Chemistry, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

J Bacteriol. 2005 Jun;187(11):3814-24. doi: 10.1128/JB.187.11.3814-3824.2005.

Abstract

Wautersia eutropha, formerly known as Ralstonia eutropha, a gram-negative bacterium, accumulates polyhydroxybutyrate (PHB) as insoluble granules inside the cell when nutrients other than carbon are limited. In this paper, we report findings from kinetic studies of granule formation and degradation in W. eutropha H16 obtained using transmission electron microscopy (TEM). In nitrogen-limited growth medium, the phenotype of the cells at the early stages of granule formation was revealed for the first time. At the center of the cells, dark-stained "mediation elements" with small granules attached were observed. These mediation elements are proposed to serve as nucleation sites for granule initiation. TEM images also revealed that when W. eutropha cells were introduced into nitrogen-limited medium from nutrient-rich medium, the cell size increased two- to threefold, and the cells underwent additional volume changes during growth. Unbiased stereology was used to analyze the two-dimensional TEM images, from which the average volume of a W. eutropha H16 cell and the total surface area of granules per cell in nutrient-rich and PHB production media were obtained. These parameters were essential in the calculation of the concentration of proteins involved in PHB formation and utilization and their changes with time. The extent of protein coverage of the granule surface area is presented in the accompanying paper.

摘要

真养产碱菌(Wautersia eutropha),以前称为嗜麦芽寡养单胞菌(Ralstonia eutropha),是一种革兰氏阴性菌,当除碳以外的营养物质有限时,它会在细胞内积累聚羟基丁酸酯(PHB)作为不溶性颗粒。在本文中,我们报告了使用透射电子显微镜(TEM)对真养产碱菌H16颗粒形成和降解的动力学研究结果。在氮限制生长培养基中,首次揭示了颗粒形成早期细胞的表型。在细胞中心,观察到附着有小颗粒的深色“介导元件”。这些介导元件被认为是颗粒起始的成核位点。TEM图像还显示,当真养产碱菌细胞从营养丰富的培养基引入氮限制培养基时,细胞大小增加了两到三倍,并且细胞在生长过程中经历了额外的体积变化。使用无偏体视学分析二维TEM图像,从中获得了真养产碱菌H16细胞的平均体积以及营养丰富培养基和PHB生产培养基中每个细胞颗粒的总表面积。这些参数对于计算参与PHB形成和利用的蛋白质浓度及其随时间的变化至关重要。颗粒表面积的蛋白质覆盖程度在随附的论文中给出。

相似文献

3
New Insights into PhaM-PhaC-Mediated Localization of Polyhydroxybutyrate Granules in Ralstonia eutropha H16.
Appl Environ Microbiol. 2017 May 31;83(12). doi: 10.1128/AEM.00505-17. Print 2017 Jun 15.
4
Growth and localization of polyhydroxybutyrate granules in Ralstonia eutropha.
J Bacteriol. 2012 Mar;194(5):1092-9. doi: 10.1128/JB.06125-11. Epub 2011 Dec 16.
5
Effects of intracellular poly(3-hydroxybutyrate) reserves on physiological-biochemical properties and growth of Ralstonia eutropha.
Res Microbiol. 2013 Feb-Mar;164(2):164-71. doi: 10.1016/j.resmic.2012.10.008. Epub 2012 Oct 23.
7
Mobilization of poly(3-hydroxybutyrate) in Ralstonia eutropha.
J Bacteriol. 2000 Oct;182(20):5916-8. doi: 10.1128/JB.182.20.5916-5918.2000.
8
Comparative proteome analysis reveals four novel polyhydroxybutyrate (PHB) granule-associated proteins in Ralstonia eutropha H16.
Appl Environ Microbiol. 2015 Mar;81(5):1847-58. doi: 10.1128/AEM.03791-14. Epub 2014 Dec 29.
9
PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha.
BMC Microbiol. 2012 Nov 16;12:262. doi: 10.1186/1471-2180-12-262.
10
Monitoring the in situ crystallization of native biopolyester granules in Ralstonia eutropha via infrared spectroscopy.
J Microbiol Methods. 2011 Oct;87(1):49-55. doi: 10.1016/j.mimet.2011.07.009. Epub 2011 Jul 23.

引用本文的文献

1
Estimation of PHA concentrations from cell density data in Cupriavidus necator.
Appl Microbiol Biotechnol. 2025 Jan 18;109(1):11. doi: 10.1007/s00253-024-13392-z.
2
Production of Poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV) by Using Candy Industry Waste as Raw Materials.
Bioengineering (Basel). 2024 Aug 27;11(9):870. doi: 10.3390/bioengineering11090870.
4
Extracellular Poly(hydroxybutyrate) Bioplastic Production Using Surface Display Techniques.
ACS Mater Au. 2023 Nov 6;4(2):174-178. doi: 10.1021/acsmaterialsau.3c00059. eCollection 2024 Mar 13.
5
Biosynthesis of polyhydroxybutyrate by DSM13060 is essential for intracellular colonization in plant endosymbiosis.
Front Plant Sci. 2024 Feb 2;15:1302705. doi: 10.3389/fpls.2024.1302705. eCollection 2024.
6
Minimizing the Lag Phase of Cupriavidus necator Growth under Autotrophic, Heterotrophic, and Mixotrophic Conditions.
Appl Environ Microbiol. 2023 Feb 28;89(2):e0200722. doi: 10.1128/aem.02007-22. Epub 2023 Jan 31.
8
In vivo quantification of polyhydroxybutyrate (PHB) in the alphaproteobacterial methanotroph, Methylocystis sp. Rockwell.
Appl Microbiol Biotechnol. 2022 Jan;106(2):811-819. doi: 10.1007/s00253-021-11732-x. Epub 2021 Dec 18.
10
Biosynthesis of Polyhydroxybutyrate with Cellulose Nanocrystals Using .
Polymers (Basel). 2021 Aug 5;13(16):2604. doi: 10.3390/polym13162604.

本文引用的文献

3
The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides.
Annu Rev Microbiol. 2004;58:521-54. doi: 10.1146/annurev.micro.57.030502.091022.
6
Polyhydroxyalkanoate (PHA) hemeostasis: the role of PHA synthase.
Nat Prod Rep. 2003 Oct;20(5):445-57. doi: 10.1039/b209687k.
7
STRUCTURE OF POLY-BETA-HYDROXYBUTYRIC ACID GRANULES.
J Gen Microbiol. 1964 Mar;34:441-6. doi: 10.1099/00221287-34-3-441.
8
OBSERVATIONS ON THE FINE STRUCTURE OF SPHEROPLASTS OF RHODOSPIRILLUM RUBRUM.
J Cell Biol. 1964 Feb;20(2):297-311. doi: 10.1083/jcb.20.2.297.
9
Preliminary analysis of polyhydroxyalkanoate inclusions using atomic force microscopy.
FEMS Microbiol Lett. 2003 Sep 12;226(1):113-9. doi: 10.1016/S0378-1097(03)00610-4.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验