Suppr超能文献

聚羟基丁酸酯颗粒在恶臭假单胞菌中的生长和定位。

Growth and localization of polyhydroxybutyrate granules in Ralstonia eutropha.

机构信息

California Institute of Technology, Pasadena, California, USA.

出版信息

J Bacteriol. 2012 Mar;194(5):1092-9. doi: 10.1128/JB.06125-11. Epub 2011 Dec 16.

Abstract

The bacterium Ralstonia eutropha forms cytoplasmic granules of polyhydroxybutyrate that are a source of biodegradable thermoplastic. While much is known about the biochemistry of polyhydroxybutyrate production, the cell biology of granule formation and growth remains unclear. Previous studies have suggested that granules form either in the inner membrane, on a central scaffold, or in the cytoplasm. Here we used electron cryotomography to monitor granule genesis and development in 3 dimensions (3-D) in a near-native, "frozen-hydrated" state in intact Ralstonia eutropha cells. Neither nascent granules within the cell membrane nor scaffolds were seen. Instead, granules of all sizes resided toward the center of the cytoplasm along the length of the cell and exhibited a discontinuous surface layer more consistent with a partial protein coating than either a lipid mono- or bilayer. Putatively fusing granules were also seen, suggesting that small granules are continually generated and then grow and merge. Together, these observations support a model of biogenesis wherein granules form in the cytoplasm coated not by phospholipid but by protein. Previous thin-section electron microscopy (EM), fluorescence microscopy, and atomic force microscopy (AFM) results to the contrary may reflect both differences in nucleoid condensation and specimen preparation-induced artifacts.

摘要

产碱杆菌能够形成聚羟基丁酸酯细胞质颗粒,这种颗粒是生物可降解热塑性塑料的来源。虽然人们对聚羟基丁酸酯生产的生物化学有了很多了解,但颗粒形成和生长的细胞生物学仍然不清楚。先前的研究表明,颗粒要么在内膜上,要么在中央支架上,要么在细胞质中形成。在这里,我们使用电子晶体断层扫描技术在接近自然状态的“冷冻水合”状态下,以 3 维(3-D)的方式监测完整的产碱杆菌细胞中颗粒的发生和发育。在细胞膜内既没有看到新生的颗粒,也没有看到支架。相反,所有大小的颗粒都沿着细胞的长度位于细胞质的中心,并表现出不连续的表面层,与蛋白质部分涂层更一致,而不是脂质单层或双层。还观察到了推测正在融合的颗粒,这表明小颗粒不断产生,然后生长和融合。这些观察结果共同支持了一种生物发生模型,即颗粒在细胞质中形成,不是由磷脂而是由蛋白质包裹。先前的薄切片电子显微镜(EM)、荧光显微镜和原子力显微镜(AFM)结果与此相反,可能反映了核体凝聚和标本制备诱导的人为因素的差异。

相似文献

1
Growth and localization of polyhydroxybutyrate granules in Ralstonia eutropha.
J Bacteriol. 2012 Mar;194(5):1092-9. doi: 10.1128/JB.06125-11. Epub 2011 Dec 16.
2
Effects of intracellular poly(3-hydroxybutyrate) reserves on physiological-biochemical properties and growth of Ralstonia eutropha.
Res Microbiol. 2013 Feb-Mar;164(2):164-71. doi: 10.1016/j.resmic.2012.10.008. Epub 2012 Oct 23.
4
New Insights into PhaM-PhaC-Mediated Localization of Polyhydroxybutyrate Granules in Ralstonia eutropha H16.
Appl Environ Microbiol. 2017 May 31;83(12). doi: 10.1128/AEM.00505-17. Print 2017 Jun 15.
5
PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha.
BMC Microbiol. 2012 Nov 16;12:262. doi: 10.1186/1471-2180-12-262.
6
Polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha cells: a computer simulation.
Appl Microbiol Biotechnol. 2004 Jun;64(5):611-7. doi: 10.1007/s00253-003-1551-9. Epub 2004 Feb 3.
7
Monitoring the in situ crystallization of native biopolyester granules in Ralstonia eutropha via infrared spectroscopy.
J Microbiol Methods. 2011 Oct;87(1):49-55. doi: 10.1016/j.mimet.2011.07.009. Epub 2011 Jul 23.
8
Mobilization of poly(3-hydroxybutyrate) in Ralstonia eutropha.
J Bacteriol. 2000 Oct;182(20):5916-8. doi: 10.1128/JB.182.20.5916-5918.2000.

引用本文的文献

1
Quantitative Analysis of Storage Organelles via Cryo-Electron Tomography and Light Microscopy.
Biomolecules. 2024 Aug 14;14(8):1006. doi: 10.3390/biom14081006.
4
Cryo-Electron Tomography Reveals the Complex Ultrastructural Organization of Multicellular Filamentous () Bacteria.
Front Microbiol. 2020 Jun 26;11:1373. doi: 10.3389/fmicb.2020.01373. eCollection 2020.
5
Preparing samples from whole cells using focused-ion-beam milling for cryo-electron tomography.
Nat Protoc. 2020 Jun;15(6):2041-2070. doi: 10.1038/s41596-020-0320-x. Epub 2020 May 13.
6
Simulations suggest a constrictive force is required for Gram-negative bacterial cell division.
Nat Commun. 2019 Mar 19;10(1):1259. doi: 10.1038/s41467-019-09264-0.
8
Poly-3-Hydroxybutyrate Functionalization with BioF-Tagged Recombinant Proteins.
Appl Environ Microbiol. 2018 Jan 31;84(4). doi: 10.1128/AEM.02595-17. Print 2018 Feb 15.
9
Polyhydroxyalkanoate-associated phasins as phylogenetically heterogeneous, multipurpose proteins.
Microb Biotechnol. 2017 Nov;10(6):1323-1337. doi: 10.1111/1751-7915.12718. Epub 2017 Apr 20.

本文引用的文献

3
Structural diversity of bacterial flagellar motors.
EMBO J. 2011 Jun 14;30(14):2972-81. doi: 10.1038/emboj.2011.186.
4
Nucleoid-associated PhaF phasin drives intracellular location and segregation of polyhydroxyalkanoate granules in Pseudomonas putida KT2442.
Mol Microbiol. 2011 Jan;79(2):402-18. doi: 10.1111/j.1365-2958.2010.07450.x. Epub 2010 Nov 16.
5
Fast tomographic reconstruction on multicore computers.
Bioinformatics. 2011 Feb 15;27(4):582-3. doi: 10.1093/bioinformatics/btq692. Epub 2010 Dec 20.
6
Spiral architecture of the nucleoid in Bdellovibrio bacteriovorus.
J Bacteriol. 2011 Mar;193(6):1341-50. doi: 10.1128/JB.01061-10. Epub 2010 Dec 10.
7
Bacterial TEM: new insights from cryo-microscopy.
Methods Cell Biol. 2010;96:21-45. doi: 10.1016/S0091-679X(10)96002-0.
8
Elucidation of beta-oxidation pathways in Ralstonia eutropha H16 by examination of global gene expression.
J Bacteriol. 2010 Oct;192(20):5454-64. doi: 10.1128/JB.00493-10. Epub 2010 Aug 13.
9
Polyhydroxyalkanoates: bioplastics with a green agenda.
Curr Opin Microbiol. 2010 Jun;13(3):321-6. doi: 10.1016/j.mib.2010.02.006. Epub 2010 Mar 12.
10
Spatially ordered dynamics of the bacterial carbon fixation machinery.
Science. 2010 Mar 5;327(5970):1258-61. doi: 10.1126/science.1186090.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验