Suppr超能文献

通过近似熵算法对激素脉冲性进行量化。

Quantification of hormone pulsatility via an approximate entropy algorithm.

作者信息

Pincus S M, Keefe D L

机构信息

Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut 06510.

出版信息

Am J Physiol. 1992 May;262(5 Pt 1):E741-54. doi: 10.1152/ajpendo.1992.262.5.E741.

Abstract

Approximate entropy (ApEn) is a recently developed formula to quantify the amount of regularity in data. We examine the potential applicability of ApEn to clinical endocrinology to quantify pulsatility in hormone secretion data. We evaluate the role of ApEn as a complementary statistic to widely employed pulse-detection algorithms, represented herein by ULTRA, via the analysis of two different classes of models that generate episodic data. We conclude that ApEn is able to discern subtle system changes and to provide insights separate from those given by ULTRA. ApEn evaluates subordinate as well as peak behavior and often provides a direct measure of feedback between subsystems. ApEn generally can distinguish systems given 180 data points and an intra-assay coefficient of variation of 8%. This suggests ApEn as applicable to clinical hormone secretion data within the foreseeable future. Additionally, the models analyzed and extant clinical data are both consistent with episodic, not periodic, normative physiology.

摘要

近似熵(ApEn)是最近开发的一种用于量化数据中规律性程度的公式。我们研究了ApEn在临床内分泌学中的潜在适用性,以量化激素分泌数据中的搏动性。通过分析两类生成间歇性数据的不同模型,我们评估了ApEn作为广泛使用的脉冲检测算法(本文以ULTRA为代表)的补充统计量的作用。我们得出结论,ApEn能够辨别细微的系统变化,并提供与ULTRA不同的见解。ApEn评估从属行为以及峰值行为,并且通常提供子系统之间反馈的直接度量。一般来说,ApEn能够区分具有180个数据点且批内变异系数为8%的系统。这表明在可预见的未来,ApEn适用于临床激素分泌数据。此外,所分析的模型和现有的临床数据均与间歇性而非周期性的正常生理学一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验