Reise Steven P, Haviland Mark G
Department of Psychology, University of California, Los Angeles, CA 90095, USA.
J Pers Assess. 2005 Jun;84(3):228-38. doi: 10.1207/s15327752jpa8403_02.
An instrument's sensitivity to detect individual-level change is an important consideration for both psychometric and clinical researchers. In this article, we develop a cognitive problems measure and evaluate its sensitivity to detect change from an item response theory (IRT) perspective. After illustrating assumption checking and model fit assessment, we detail 4 features of IRT modeling: (a) the scale information curve and its relation to the bandwidth of measurement precision, (b) the scale response curve and how it is used to link the latent trait metric with the raw score metric, (c) content-based versus norm-based score referencing, and (d) the level of measurement of the latent trait scale. We conclude that IRT offers an informative, alternative framework for understanding an instrument's psychometric properties and recommend that IRT analyses be considered prior to investigations of change, growth, or the effectiveness of clinical interventions.
对于心理测量学研究人员和临床研究人员而言,仪器检测个体水平变化的敏感性都是一个重要的考量因素。在本文中,我们开发了一种认知问题测量方法,并从项目反应理论(IRT)的角度评估其检测变化的敏感性。在阐述假设检验和模型拟合评估之后,我们详细介绍了IRT建模的4个特征:(a)量表信息曲线及其与测量精度带宽的关系,(b)量表反应曲线以及如何用它将潜在特质指标与原始分数指标联系起来,(c)基于内容的分数参照与基于常模的分数参照,以及(d)潜在特质量表的测量水平。我们得出结论,IRT为理解仪器的心理测量特性提供了一个信息丰富的替代框架,并建议在研究变化、成长或临床干预效果之前考虑进行IRT分析。