Suppr超能文献

小鼠脑多光谱磁共振显微镜下神经解剖结构的自动分割

Automated segmentation of neuroanatomical structures in multispectral MR microscopy of the mouse brain.

作者信息

Ali Anjum A, Dale Anders M, Badea Alexandra, Johnson G Allan

机构信息

Center for In Vivo Microscopy, Box 3302, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Neuroimage. 2005 Aug 15;27(2):425-35. doi: 10.1016/j.neuroimage.2005.04.017.

Abstract

We present the automated segmentation of magnetic resonance microscopy (MRM) images of the C57BL/6J mouse brain into 21 neuroanatomical structures, including the ventricular system, corpus callosum, hippocampus, caudate putamen, inferior colliculus, internal capsule, globus pallidus, and substantia nigra. The segmentation algorithm operates on multispectral, three-dimensional (3D) MR data acquired at 90-microm isotropic resolution. Probabilistic information used in the segmentation is extracted from training datasets of T2-weighted, proton density-weighted, and diffusion-weighted acquisitions. Spatial information is employed in the form of prior probabilities of occurrence of a structure at a location (location priors) and the pairwise probabilities between structures (contextual priors). Validation using standard morphometry indices shows good consistency between automatically segmented and manually traced data. Results achieved in the mouse brain are comparable with those achieved in human brain studies using similar techniques. The segmentation algorithm shows excellent potential for routine morphological phenotyping of mouse models.

摘要

我们展示了将C57BL/6J小鼠大脑的磁共振显微镜(MRM)图像自动分割为21个神经解剖结构的方法,这些结构包括脑室系统、胼胝体、海马体、尾状壳核、下丘、内囊、苍白球和黑质。分割算法对以90微米各向同性分辨率采集的多光谱三维(3D)MR数据进行操作。分割中使用的概率信息是从T2加权、质子密度加权和扩散加权采集的训练数据集中提取的。空间信息以结构在某位置出现的先验概率(位置先验)和结构之间的成对概率(上下文先验)的形式使用。使用标准形态测量指标进行的验证表明,自动分割数据与手动追踪数据之间具有良好的一致性。在小鼠大脑中取得的结果与使用类似技术在人类大脑研究中取得的结果相当。该分割算法在小鼠模型的常规形态表型分析中显示出巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验