Suppr超能文献

卷积神经网络能够在创伤性脑损伤后的磁共振成像中对大鼠海马体进行稳健的自动分割。

Convolutional Neural Networks Enable Robust Automatic Segmentation of the Rat Hippocampus in MRI After Traumatic Brain Injury.

作者信息

De Feo Riccardo, Hämäläinen Elina, Manninen Eppu, Immonen Riikka, Valverde Juan Miguel, Ndode-Ekane Xavier Ekolle, Gröhn Olli, Pitkänen Asla, Tohka Jussi

机构信息

A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.

SAIMLAL Department (Human Anatomy, Histology, Forensic Medicine and Orthopedics), Sapienza Università di Roma, Rome, Italy.

出版信息

Front Neurol. 2022 Feb 17;13:820267. doi: 10.3389/fneur.2022.820267. eCollection 2022.

Abstract

Registration-based methods are commonly used in the automatic segmentation of magnetic resonance (MR) brain images. However, these methods are not robust to the presence of gross pathologies that can alter the brain anatomy and affect the alignment of the atlas image with the target image. In this work, we develop a robust algorithm, MU-Net-R, for automatic segmentation of the normal and injured rat hippocampus based on an ensemble of U-net-like Convolutional Neural Networks (CNNs). MU-Net-R was trained on manually segmented MR images of sham-operated rats and rats with traumatic brain injury (TBI) by lateral fluid percussion. The performance of MU-Net-R was quantitatively compared with methods based on single and multi-atlas registration using MR images from two large preclinical cohorts. Automatic segmentations using MU-Net-R and multi-atlas registration were of excellent quality, achieving cross-validated Dice scores above 0.90 despite the presence of brain lesions, atrophy, and ventricular enlargement. In contrast, the performance of single-atlas segmentation was unsatisfactory (cross-validated Dice scores below 0.85). Interestingly, the registration-based methods were better at segmenting the contralateral than the ipsilateral hippocampus, whereas MU-Net-R segmented the contralateral and ipsilateral hippocampus equally well. We assessed the progression of hippocampal damage after TBI by using our automatic segmentation tool. Our data show that the presence of TBI, time after TBI, and whether the hippocampus was ipsilateral or contralateral to the injury were the parameters that explained hippocampal volume.

摘要

基于配准的方法常用于磁共振(MR)脑图像的自动分割。然而,这些方法对于严重病理情况的存在并不稳健,这些病理情况会改变脑解剖结构并影响图谱图像与目标图像的对齐。在这项工作中,我们基于类似U-net的卷积神经网络(CNN)集成开发了一种稳健的算法MU-Net-R,用于正常和受伤大鼠海马体的自动分割。MU-Net-R在假手术大鼠和经侧脑室液体冲击法造成创伤性脑损伤(TBI)的大鼠的手动分割MR图像上进行训练。使用来自两个大型临床前队列的MR图像,将MU-Net-R的性能与基于单图谱和多图谱配准的方法进行了定量比较。尽管存在脑损伤、萎缩和脑室扩大,使用MU-Net-R和多图谱配准进行的自动分割质量优异,交叉验证的骰子系数得分高于0.90。相比之下,单图谱分割的性能并不令人满意(交叉验证的骰子系数得分低于0.85)。有趣的是,基于配准的方法在分割对侧海马体方面比同侧海马体更好,而MU-Net-R对同侧和对侧海马体的分割效果同样良好。我们使用自动分割工具评估了TBI后海马体损伤的进展。我们的数据表明,TBI的存在、TBI后的时间以及海马体与损伤同侧还是对侧是解释海马体体积的参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1167/8891699/e1f21869dca7/fneur-13-820267-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验