Suppr超能文献

物体操纵过程中的内力。

Internal forces during object manipulation.

作者信息

Gao Fan, Latash Mark L, Zatsiorsky Vladimir M

机构信息

Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Exp Brain Res. 2005 Aug;165(1):69-83. doi: 10.1007/s00221-005-2282-1. Epub 2005 May 24.

Abstract

Internal force is a set of contact forces that does not disturb object equilibrium. The elements of the internal force vector cancel each other and, hence, do not contribute to the resultant (manipulation) force acting on the object. The mathematical independence of the internal and manipulation forces allows for their independent (decoupled) control realized in robotic manipulators. To examine whether in humans internal force is coupled with the manipulation force and what grasping strategy the performers utilize, the subjects (n=6) were instructed to make cyclic arm movements with a customized handle. Six combinations of handle orientation and movement direction were tested. These involved: parallel manipulations (1) VV task (vertical orientation and vertical movement) and (2) HH task (horizontal orientation and horizontal movement); orthogonal manipulations (3) VH task (vertical orientation and horizontal movement) and (4) HV task (horizontal orientation and vertical movement); and diagonal manipulations (5) DV task (diagonal orientation and vertical movement) and (6) DH task (diagonal orientation and horizontal movement). Handle weight (from 3.8 to 13.8 N), and movement frequency (from 1 to 3 Hz) were systematically changed. The analysis was performed at the thumb-virtual finger level (VF, an imaginary finger that produces a wrench equal to the sum of wrenches produced by all the fingers). At this level, the forces of interest could be reduced to the internal force and internal moment. During the parallel manipulations, the internal (grip) force was coupled with the manipulation force (producing object acceleration) and the thumb-VF forces increased or decreased in phase: the thumb and VF worked in synchrony to grasp the object more strongly or more weakly. During the orthogonal manipulations, the thumb-VF forces changed out of phase: the plots of the internal force vs. object acceleration resembled an inverted letter V. The HV task was the only task where the relative phase (coupling) between the normal forces of the thumb and VF depended on oscillation frequency. During the diagonal manipulations, the coupling was different in the DV and DH tasks. A novel observation of substantial internal moments is described: the moments produced by the normal finger forces were counterbalanced by the moments produced by the tangential forces such that the resultant moments were close to zero. Implications of the findings for the notion of grasping synergies are discussed.

摘要

内力是一组不干扰物体平衡的接触力。内力矢量的各分量相互抵消,因此,对作用在物体上的合力(操纵力)没有贡献。内力和操纵力在数学上的独立性使得它们能够在机器人操纵器中实现独立(解耦)控制。为了研究在人类中内力是否与操纵力耦合,以及执行者采用何种抓握策略,让受试者(n = 6)使用定制手柄进行周期性手臂运动。测试了手柄方向和运动方向的六种组合。这些组合包括:平行操纵(1)VV任务(垂直方向和垂直运动)和(2)HH任务(水平方向和水平运动);正交操纵(3)VH任务(垂直方向和水平运动)和(4)HV任务(水平方向和垂直运动);以及对角操纵(5)DV任务(对角方向和垂直运动)和(6)DH任务(对角方向和水平运动)。系统地改变手柄重量(从3.8到13.8 N)和运动频率(从1到3 Hz)。分析是在拇指 - 虚拟手指水平(VF,一个假想手指,其产生的力等于所有手指产生的力的总和)进行的。在这个水平上,感兴趣的力可以简化为内力和内力矩。在平行操纵期间,内部(抓握)力与操纵力耦合(产生物体加速度),拇指 - VF力同相增加或减少:拇指和VF同步工作以更强或更弱地抓握物体。在正交操纵期间,拇指 - VF力异相变化:内力与物体加速度的关系图类似于倒V形。HV任务是唯一拇指和VF法向力之间的相对相位(耦合)取决于振荡频率的任务。在对角操纵期间,DV和DH任务中的耦合不同。描述了一个关于大量内力矩的新观察结果:法向手指力产生的力矩被切向力产生的力矩平衡,使得合力矩接近零。讨论了这些发现对抓握协同概念的影响。

相似文献

1
Internal forces during object manipulation.
Exp Brain Res. 2005 Aug;165(1):69-83. doi: 10.1007/s00221-005-2282-1. Epub 2005 May 24.
2
Digit force adjustments during finger addition/removal in multi-digit prehension.
Exp Brain Res. 2008 Aug;189(3):345-59. doi: 10.1007/s00221-008-1430-9. Epub 2008 Jun 14.
3
Multi-digit coordination during lifting a horizontally oriented object: synergies control with referent configurations.
Exp Brain Res. 2012 Oct;222(3):277-90. doi: 10.1007/s00221-012-3215-4. Epub 2012 Aug 22.
4
Static prehension of a horizontally oriented object in three dimensions.
Exp Brain Res. 2012 Jan;216(2):249-61. doi: 10.1007/s00221-011-2923-5. Epub 2011 Nov 10.
5
Prehension stability: experiments with expanding and contracting handle.
J Neurophysiol. 2006 Apr;95(4):2513-29. doi: 10.1152/jn.00839.2005. Epub 2005 Nov 30.
6
Effects of grasping force magnitude on the coordination of digit forces in multi-finger prehension.
Exp Brain Res. 2009 Mar;194(1):115-29. doi: 10.1007/s00221-008-1675-3. Epub 2009 Jan 13.
7
Control of fingertip forces in multidigit manipulation.
J Neurophysiol. 1999 Apr;81(4):1706-17. doi: 10.1152/jn.1999.81.4.1706.
9
Prehension synergies during smooth changes of the external torque.
Exp Brain Res. 2011 Sep;213(4):493-506. doi: 10.1007/s00221-011-2799-4. Epub 2011 Jul 28.

引用本文的文献

1
Handy divisions: Hand-specific specialization of prehensile control in bimanual tasks.
PLoS One. 2025 Apr 16;20(4):e0321739. doi: 10.1371/journal.pone.0321739. eCollection 2025.
2
Simplified internal models in human control of complex objects.
PLoS Comput Biol. 2024 Nov 18;20(11):e1012599. doi: 10.1371/journal.pcbi.1012599. eCollection 2024 Nov.
4
Dexterous manipulation: differential sensitivity of manipulation and grasp forces to task requirements.
J Neurophysiol. 2024 Jul 1;132(1):259-276. doi: 10.1152/jn.00034.2024. Epub 2024 Jun 12.
5
Positional relationship between ball and fingers for accurate baseball pitching.
PLoS One. 2023 Dec 19;18(12):e0290042. doi: 10.1371/journal.pone.0290042. eCollection 2023.
6
Expectation of volitional arm movement has prolonged effects on the grip force exerted on a pinched object.
Exp Brain Res. 2022 Oct;240(10):2607-2621. doi: 10.1007/s00221-022-06438-z. Epub 2022 Aug 11.
7
Preparing to move: Setting initial conditions to simplify interactions with complex objects.
PLoS Comput Biol. 2021 Dec 17;17(12):e1009597. doi: 10.1371/journal.pcbi.1009597. eCollection 2021 Dec.
8
Involuntary Neuromuscular Coupling between the Thumb and Finger of Stroke Survivors during Dynamic Movement.
Front Neurol. 2018 Mar 1;9:84. doi: 10.3389/fneur.2018.00084. eCollection 2018.
9
Predictability and Robustness in the Manipulation of Dynamically Complex Objects.
Adv Exp Med Biol. 2016;957:55-77. doi: 10.1007/978-3-319-47313-0_4.
10
The synergic control of multi-finger force production: stability of explicit and implicit task components.
Exp Brain Res. 2017 Jan;235(1):1-14. doi: 10.1007/s00221-016-4768-4. Epub 2016 Sep 6.

本文引用的文献

1
A general dynamic force distribution algorithm for multifingered grasping.
IEEE Trans Syst Man Cybern B Cybern. 2000;30(1):185-92. doi: 10.1109/3477.826959.
2
Modulation of grasping forces during object transport.
J Neurophysiol. 2005 Jan;93(1):137-45. doi: 10.1152/jn.00775.2004. Epub 2004 Sep 1.
3
Prehension synergies.
Exerc Sport Sci Rev. 2004 Apr;32(2):75-80. doi: 10.1097/00003677-200404000-00007.
4
Age-related changes in finger coordination in static prehension tasks.
J Appl Physiol (1985). 2004 Jul;97(1):213-24. doi: 10.1152/japplphysiol.00045.2004. Epub 2004 Mar 5.
5
Prehension synergies: trial-to-trial variability and hierarchical organization of stable performance.
Exp Brain Res. 2003 Sep;152(2):173-84. doi: 10.1007/s00221-003-1527-0. Epub 2003 Jul 26.
6
Coordination of fingertip forces in object transport during locomotion.
Exp Brain Res. 2003 Apr;149(3):371-9. doi: 10.1007/s00221-003-1380-1. Epub 2003 Feb 11.
7
Prehension synergies: effects of object geometry and prescribed torques.
Exp Brain Res. 2003 Jan;148(1):77-87. doi: 10.1007/s00221-002-1278-3. Epub 2002 Nov 12.
10
Toward a physiological understanding of human dexterity.
News Physiol Sci. 2001 Oct;16:228-33. doi: 10.1152/physiologyonline.2001.16.5.228.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验