Suppr超能文献

人类对复杂物体控制中的简化内部模型

Simplified internal models in human control of complex objects.

作者信息

Bazzi Salah, Stansfield Stephan, Hogan Neville, Sternad Dagmar

机构信息

Institute for Experiential Robotics, Northeastern University, Boston, Massachusetts, United States of America.

Department of Mechanical Engineering, MIT, Cambridge, Massachusetts, United States of America.

出版信息

PLoS Comput Biol. 2024 Nov 18;20(11):e1012599. doi: 10.1371/journal.pcbi.1012599. eCollection 2024 Nov.

Abstract

Humans are skillful at manipulating objects that possess nonlinear underactuated dynamics, such as clothes or containers filled with liquids. Several studies suggested that humans implement a predictive model-based strategy to control such objects. However, these studies only considered unconstrained reaching without any object involved or, at most, linear mass-spring systems with relatively simple dynamics. It is not clear what internal model humans develop of more complex objects, and what level of granularity is represented. To answer these questions, this study examined a task where participants physically interacted with a nonlinear underactuated system mimicking a cup of sloshing coffee: a cup with a ball rolling inside. The cup and ball were simulated in a virtual environment and subjects interacted with the system via a haptic robotic interface. Participants were instructed to move the system and arrive at a target region with both cup and ball at rest, 'zeroing out' residual oscillations of the ball. This challenging task affords a solution known as 'input shaping', whereby a series of pulses moves the dynamic object to the target leaving no residual oscillations. Since the timing and amplitude of these pulses depend on the controller's internal model of the object, input shaping served as a tool to identify the subjects' internal representation of the cup-and-ball. Five simulations with different internal models were compared against the human data. Results showed that the features in the data were correctly predicted by a simple internal model that represented the cup-and-ball as a single rigid mass coupled to the hand impedance. These findings provide evidence that humans use simplified internal models along with mechanical impedance to manipulate complex objects.

摘要

人类善于操控具有非线性欠驱动动力学的物体,比如衣物或装有液体的容器。多项研究表明,人类会实施基于预测模型的策略来控制此类物体。然而,这些研究仅考虑了无任何物体参与的无约束伸手动作,或者最多只是考虑了动力学相对简单的线性质量 - 弹簧系统。目前尚不清楚人类针对更复杂物体所构建的内部模型是什么,以及所呈现的粒度水平如何。为了回答这些问题,本研究考察了一项任务,在该任务中参与者与一个模拟一杯晃动咖啡的非线性欠驱动系统进行物理交互:一个内部有球滚动的杯子。杯子和球在虚拟环境中进行模拟,受试者通过触觉机器人接口与该系统进行交互。参与者被要求移动该系统,使杯子和球都静止地到达目标区域,即“消除”球的残余振荡。这项具有挑战性的任务有一种被称为“输入整形”的解决方案,通过一系列脉冲将动态物体移动到目标位置且不留下残余振荡。由于这些脉冲的时间和幅度取决于控制器对物体的内部模型,输入整形成为了一种识别受试者对杯子和球的内部表征的工具。将具有不同内部模型的五种模拟与人类数据进行了比较。结果表明,数据中的特征能够被一个简单的内部模型正确预测,该模型将杯子和球表示为与手部阻抗耦合的单个刚性质量。这些发现提供了证据,表明人类使用简化的内部模型以及机械阻抗来操控复杂物体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e64d/11723638/49986c08c8aa/pcbi.1012599.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验