Pechère Jean-Claude
International Society of Chemotherapy, 19 avenue Krieg 1208 Geneve, Suisse.
Bull Acad Natl Med. 2004;188(8):1249-56.
Bacteria produce inhibitory enzymes (beta-lactamases, etc), block antibiotic attachment to target molecules (MRSA, etc.), extrude antibiotics from the cell by active efflux systems (multidrug resistant pseudomonas, etc) or limit antibiotic penetration through the outer membrane in Gram negatives. Genetically, resistance occurs after mutation or horizontal transfers (transformation, transduction, conjugation) of mobile genetic elements (integrons, transposons, phages, plasmids), associated with a risk of epidemic spread. Recent data stress the importance pheromones for facilitating inter-bacterial genetic exchanges. Activated by quinolones and penicillins the SOS response augments the mutation rate (by about 10,000 fold) and liberates mobile genetic elements offering more opportunities to select resistance. These highly pertinent non-darwinian systems raise the hypothesis of a primary form of intelligence developed already 3.8 billions years ago.
细菌会产生抑制性酶(β-内酰胺酶等),阻止抗生素与靶分子结合(如耐甲氧西林金黄色葡萄球菌等),通过主动外排系统将抗生素排出细胞外(如多重耐药假单胞菌等),或者限制抗生素穿透革兰氏阴性菌的外膜。从基因角度来看,耐药性是在移动遗传元件(整合子、转座子、噬菌体、质粒)发生突变或水平转移(转化、转导、接合)后产生的,这伴随着流行传播的风险。最近的数据强调了信息素在促进细菌间基因交换方面的重要性。喹诺酮类药物和青霉素激活SOS反应后会提高突变率(约10000倍),并释放出移动遗传元件,从而为选择耐药性提供了更多机会。这些高度相关的非达尔文系统提出了一种可追溯至38亿年前就已发展起来的原始智能形式的假说。