Werckenthin C, Schwarz S
Institut für Kleintierforschung Celle/Merbitz der Bundesforschungsanstalt für Landwirtschaft Braunschweig-Völkenrode (FAL).
Berl Munch Tierarztl Wochenschr. 1997 Sep;110(9):324-32.
The rapid spread of antibiotic resistances in a wide variety of bacteria is mainly due to the location of antibiotic resistance genes on mobile genetic elements such as plasmids and transposons. Principal ways of transfer of plasmid- and transposon-encoded resistance genes are presented using examples of the predominant genes mediating resistances to protein biosynthesis inhibitors such as tetracyclines, aminoglycosides, macrolide-lincosamide-streptogramin B antibiotics, and chloramphenicol in staphylococci. Transfer between different staphylococcal cells is substantially based on transduction, transformation, conjugation and mobilization while transfer of resistance genes within the same bacterial cell often includes interplasmidic recombination events and chromosomal integration of resistance plasmids or transposons. The abilities of the transferred resistance plasmids or transposons to integrate or to be integrated into DNA molecules, plasmids or chromosomal DNA, of the new host cell are of major importance to circumvent strain-, species- or genusspecific barriers such as restriction/modification systems, plasmid incompatibilities or deficiencies of plasmid replication which may limit efficient resistance gene transfer.
多种细菌中抗生素耐药性的迅速传播主要归因于抗生素耐药基因位于质粒和转座子等可移动遗传元件上。通过介导葡萄球菌对蛋白质生物合成抑制剂(如四环素、氨基糖苷类、大环内酯-林可酰胺-链阳霉素B类抗生素和氯霉素)耐药性的主要基因实例,介绍了质粒和转座子编码耐药基因的主要转移方式。不同葡萄球菌细胞之间的转移主要基于转导、转化、接合和移动作用,而同一细菌细胞内耐药基因的转移通常包括质粒间重组事件以及耐药性质粒或转座子的染色体整合。转移的耐药性质粒或转座子整合或被整合到新宿主细胞的DNA分子、质粒或染色体DNA中的能力,对于规避可能限制有效耐药基因转移的菌株、物种或属特异性障碍(如限制/修饰系统、质粒不相容性或质粒复制缺陷)至关重要。