Suppr超能文献

使用基于规则的学习发现调控结合位点模块。

Discovering regulatory binding-site modules using rule-based learning.

作者信息

Hvidsten Torgeir R, Wilczyński Bartosz, Kryshtafovych Andriy, Tiuryn Jerzy, Komorowski Jan, Fidelis Krzysztof

机构信息

The Linnaeus Centre for Bioinformatics, Uppsala University, 751 24 Uppsala, Sweden.

出版信息

Genome Res. 2005 Jun;15(6):856-66. doi: 10.1101/gr.3760605.

Abstract

Transcription factors regulate expression by binding selectively to sequence sites in cis-regulatory regions of genes. It is therefore reasonable to assume that genes regulated by the same transcription factors should all contain the corresponding binding sites in their regulatory regions and exhibit similar expression profiles as measured by, for example, microarray technology. We have used this assumption to analyze genome-wide yeast binding-site and microarray expression data to reveal the combinatorial nature of gene regulation. We obtained IF-THEN rules linking binding-site combinations (binding-site modules) to genes with particular expression profiles, and thereby provided testable hypotheses on the combinatorial coregulation of gene expression. We showed that genes associated with such rules have a significantly higher probability of being bound by the same transcription factors, as indicated by a genome-wide location analysis, than genes associated with only common binding sites or similar expression. Furthermore, we also found that such genes were significantly more often biologically related in terms of Gene Ontology annotations than genes only associated with common binding sites or similar expression. We analyzed expression data collected under different sets of stress conditions and found many binding-site modules that are conserved over several of these condition sets, as well as modules that are specific to particular biological responses. Our results on the reoccurrence of binding sites in different modules provide specific data on how binding sites may be combined to allow a large number of expression outcomes using relatively few transcription factors.

摘要

转录因子通过选择性地结合基因顺式调控区域中的序列位点来调节基因表达。因此可以合理推测,受相同转录因子调控的基因在其调控区域应都含有相应的结合位点,并表现出相似的表达谱,例如通过微阵列技术测量得到的表达谱。我们利用这一推测分析了全基因组酵母结合位点和微阵列表达数据,以揭示基因调控的组合性质。我们获得了将结合位点组合(结合位点模块)与具有特定表达谱的基因联系起来的“如果-那么”规则,从而为基因表达的组合协同调控提供了可检验的假设。我们表明,如全基因组定位分析所示,与这些规则相关的基因被相同转录因子结合的概率显著高于仅与常见结合位点或相似表达相关的基因。此外,我们还发现,就基因本体注释而言,这类基因在生物学上的相关性也显著高于仅与常见结合位点或相似表达相关的基因。我们分析了在不同应激条件下收集的表达数据,发现了许多在多个条件组中都保守的结合位点模块,以及特定于特定生物学反应的模块。我们关于不同模块中结合位点重现性的结果提供了具体数据,说明了结合位点如何组合以利用相对较少的转录因子实现大量的表达结果。

相似文献

1
Discovering regulatory binding-site modules using rule-based learning.
Genome Res. 2005 Jun;15(6):856-66. doi: 10.1101/gr.3760605.
2
Computational discovery of gene modules and regulatory networks.
Nat Biotechnol. 2003 Nov;21(11):1337-42. doi: 10.1038/nbt890. Epub 2003 Oct 12.
5
Computational identification of combinatorial regulation and transcription factor binding sites.
Biotechnol Bioeng. 2007 Aug 15;97(6):1594-602. doi: 10.1002/bit.21354.
6
Comparing expression profiles of genes with similar promoter regions.
Bioinformatics. 2002 Dec;18(12):1576-84. doi: 10.1093/bioinformatics/18.12.1576.
8
Genome-wide analysis of the cis-regulatory modules of divergent gene pairs in yeast.
Genomics. 2010 Dec;96(6):352-61. doi: 10.1016/j.ygeno.2010.08.008. Epub 2010 Sep 6.
10
High-resolution DNA-binding specificity analysis of yeast transcription factors.
Genome Res. 2009 Apr;19(4):556-66. doi: 10.1101/gr.090233.108. Epub 2009 Jan 21.

引用本文的文献

1
R.ROSETTA: an interpretable machine learning framework.
BMC Bioinformatics. 2021 Mar 6;22(1):110. doi: 10.1186/s12859-021-04049-z.
2
Ciruvis: a web-based tool for rule networks and interaction detection using rule-based classifiers.
BMC Bioinformatics. 2014 May 12;15:139. doi: 10.1186/1471-2105-15-139.
4
Identification of cell cycle-related regulatory motifs using a kernel canonical correlation analysis.
BMC Genomics. 2009 Dec 3;10 Suppl 3(Suppl 3):S29. doi: 10.1186/1471-2164-10-S3-S29.
5
Genetic evidence for a role of adiponutrin in the metabolism of apolipoprotein B-containing lipoproteins.
Hum Mol Genet. 2009 Dec 1;18(23):4669-76. doi: 10.1093/hmg/ddp424. Epub 2009 Sep 3.
8
Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3.
BMC Genomics. 2008 Dec 16;9:601. doi: 10.1186/1471-2164-9-601.
10
The C1C2: a framework for simultaneous model selection and assessment.
BMC Bioinformatics. 2008 Sep 2;9:360. doi: 10.1186/1471-2105-9-360.

本文引用的文献

1
Transcriptional regulatory code of a eukaryotic genome.
Nature. 2004 Sep 2;431(7004):99-104. doi: 10.1038/nature02800.
2
Predicting gene expression from sequence.
Cell. 2004 Apr 16;117(2):185-98. doi: 10.1016/s0092-8674(04)00304-6.
4
Genome-wide discovery of transcriptional modules from DNA sequence and gene expression.
Bioinformatics. 2003;19 Suppl 1:i273-82. doi: 10.1093/bioinformatics/btg1038.
5
Gibbs Recursive Sampler: finding transcription factor binding sites.
Nucleic Acids Res. 2003 Jul 1;31(13):3580-5. doi: 10.1093/nar/gkg608.
7
Predicting gene ontology biological process from temporal gene expression patterns.
Genome Res. 2003 May;13(5):965-79. doi: 10.1101/gr.1144503. Epub 2003 Apr 14.
8
Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering.
Genome Biol. 2002 Oct 10;3(11):RESEARCH0059. doi: 10.1186/gb-2002-3-11-research0059.
9
Transcriptional regulatory networks in Saccharomyces cerevisiae.
Science. 2002 Oct 25;298(5594):799-804. doi: 10.1126/science.1075090.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验