Suppr超能文献

贝类密集养殖区域下方沿海海洋沉积物中加速的硫循环。

Accelerated sulfur cycle in coastal marine sediment beneath areas of intensive shellfish aquaculture.

作者信息

Asami Hiroki, Aida Masato, Watanabe Kazuya

机构信息

Laboratory of Applied Microbiology, Marine Biotechnology Institute, 3-75-1 Heita, Kamaishi, Iwate 026-0001, Japan.

出版信息

Appl Environ Microbiol. 2005 Jun;71(6):2925-33. doi: 10.1128/AEM.71.6.2925-2933.2005.

Abstract

Prokaryotes in marine sediments taken from two neighboring semi-enclosed bays (the Yamada and Kamaishi bays) at the Sanriku coast in Japan were investigated by the culture-independent molecular phylogenetic approach coupled with chemical and activity analyses. These two bays were chosen in terms of their similar hydrogeological and chemical characteristics but different usage modes; the Yamada bay has been used for intensive shellfish aquaculture, while the Kamaishi bay has a commercial port and is not used for aquaculture. Substantial differences were found in the phylogenetic composition of 16S rRNA gene clone libraries constructed for the Yamada and Kamaishi sediments. In the Yamada library, phylotypes affiliated with delta-Proteobacteria were the most abundant, and those affiliated with gamma-Proteobacteria were the second-most abundant. In contrast, the Kamaishi library was occupied by phylotypes affiliated with Planctomycetes, gamma-Proteobacteria, delta-Proteobacteria, and Crenarchaeota. In the gamma-Proteobacteria, many Yamada phylotypes were related to free-living and symbiotic sulfur oxidizers, whereas the Kamaishi phylotype was related to the genus Pseudomonas. These results allowed us to hypothesize that sulfate-reducing and sulfur-oxidizing bacteria have become abundant in the Yamada sediment. This hypothesis was supported by quantitative competitive PCR (qcPCR) with group-specific primers. The qcPCR also suggested that organisms closely related to Desulfotalea in the Desulfobulbaceae were the major sulfate-reducing bacteria in these sediments. In addition, potential sulfate reduction and sulfur oxidation rates in the sediment samples were determined, indicating that the sulfur cycle has become active in the Yamada sediment beneath the areas of intensive shellfish aquaculture.

摘要

采用非培养分子系统发育方法,结合化学和活性分析,对取自日本三陆海岸两个相邻半封闭海湾(山田湾和釜石湾)的海洋沉积物中的原核生物进行了研究。选择这两个海湾是因为它们具有相似的水文地质和化学特征,但使用方式不同;山田湾一直用于密集的贝类养殖,而釜石湾有一个商业港口,不用于水产养殖。为山田和釜石沉积物构建的16S rRNA基因克隆文库的系统发育组成存在显著差异。在山田文库中,与δ-变形菌门相关的系统发育型最为丰富,与γ-变形菌门相关的系统发育型次之。相比之下,釜石文库中占主导的是与浮霉菌门、γ-变形菌门、δ-变形菌门和泉古菌门相关的系统发育型。在γ-变形菌门中,许多山田系统发育型与自由生活和共生的硫氧化菌有关,而釜石系统发育型与假单胞菌属有关。这些结果使我们推测,硫酸盐还原菌和硫氧化菌在山田沉积物中变得丰富。这一推测得到了使用组特异性引物的定量竞争PCR(qcPCR)的支持。qcPCR还表明,脱硫菌科中与脱硫塔菌密切相关的生物是这些沉积物中的主要硫酸盐还原菌。此外,还测定了沉积物样品中的潜在硫酸盐还原率和硫氧化率,表明在密集贝类养殖区域下方的山田沉积物中,硫循环已经活跃起来。

相似文献

1
Accelerated sulfur cycle in coastal marine sediment beneath areas of intensive shellfish aquaculture.
Appl Environ Microbiol. 2005 Jun;71(6):2925-33. doi: 10.1128/AEM.71.6.2925-2933.2005.
2
Phylogenetic diversity of bacterial and archaeal communities in the anoxic zone of the Cariaco Basin.
Appl Environ Microbiol. 2001 Apr;67(4):1663-74. doi: 10.1128/AEM.67.4.1663-1674.2001.
3
Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment.
Appl Environ Microbiol. 2001 Apr;67(4):1646-56. doi: 10.1128/AEM.67.4.1646-1656.2001.
5
Molecular phylogeny of methylotrophs in a deep-sea sediment from a tropical west Pacific Warm Pool.
FEMS Microbiol Ecol. 2004 Jan 1;47(1):77-84. doi: 10.1016/S0168-6496(03)00252-6.
6
Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments.
Appl Environ Microbiol. 2003 Jun;69(6):3181-91. doi: 10.1128/AEM.69.6.3181-3191.2003.
7
Prokaryotic diversity in Zostera noltii-colonized marine sediments.
Appl Environ Microbiol. 2000 Apr;66(4):1715-9. doi: 10.1128/AEM.66.4.1715-1719.2000.
10
Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester.
Environ Microbiol. 2005 Aug;7(8):1104-15. doi: 10.1111/j.1462-2920.2005.00795.x.

引用本文的文献

1
Biogeochemical impacts of fish farming on coastal sediments: Insights into the functional role of cable bacteria.
Front Microbiol. 2022 Dec 22;13:1034401. doi: 10.3389/fmicb.2022.1034401. eCollection 2022.
2
Bacterial community structure and functional profiling of high Arctic fjord sediments.
World J Microbiol Biotechnol. 2021 Jul 13;37(8):133. doi: 10.1007/s11274-021-03098-z.
3
Global Trends of Benthic Bacterial Diversity and Community Composition Along Organic Enrichment Gradients of Salmon Farms.
Front Microbiol. 2021 Apr 29;12:637811. doi: 10.3389/fmicb.2021.637811. eCollection 2021.
4
Fish growth enhances microbial sulfur cycling in aquaculture pond sediments.
Microb Biotechnol. 2020 Sep;13(5):1597-1610. doi: 10.1111/1751-7915.13622. Epub 2020 Jul 6.
8
Assessment of the effect of Enteromorpha prolifera on bacterial community structures in aquaculture environment.
PLoS One. 2017 Jul 25;12(7):e0179792. doi: 10.1371/journal.pone.0179792. eCollection 2017.
9
Metagenomic potential for and diversity of N-cycle driving microorganisms in the Bothnian Sea sediment.
Microbiologyopen. 2017 Aug;6(4). doi: 10.1002/mbo3.475. Epub 2017 May 23.

本文引用的文献

1
Inhibition of sulfate respiration by 1,8-dihydroxyanthraquinone and other anthraquinone derivatives.
Appl Environ Microbiol. 1996 Aug;62(8):2999-3004. doi: 10.1128/aem.62.8.2999-3004.1996.
2
Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment.
Appl Environ Microbiol. 2003 May;69(5):2463-83. doi: 10.1128/AEM.69.5.2463-2483.2003.
3
Prokaryotic metabolic activity and community structure in Antarctic continental shelf sediments.
Appl Environ Microbiol. 2003 May;69(5):2448-62. doi: 10.1128/AEM.69.5.2448-2462.2003.
5
Lipids as indicators of eutrophication in marine coastal sediments.
J Microbiol Methods. 2002 Feb;48(2-3):239-57. doi: 10.1016/s0167-7012(01)00326-8.
6
7
Quantitative molecular analysis of the microbial community in marine arctic sediments (Svalbard).
Appl Environ Microbiol. 2001 Jan;67(1):387-95. doi: 10.1128/AEM.67.1.387-395.2001.
9
Prokaryotic diversity in Zostera noltii-colonized marine sediments.
Appl Environ Microbiol. 2000 Apr;66(4):1715-9. doi: 10.1128/AEM.66.4.1715-1719.2000.
10
Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis.
Microbiology (Reading). 1999 Nov;145 ( Pt 11):3305-3315. doi: 10.1099/00221287-145-11-3305.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验