Suppr超能文献

深度学习揭示的不同脑形态测量模式可改善失语严重程度的预测。

Distinct brain morphometry patterns revealed by deep learning improve prediction of aphasia severity.

作者信息

Teghipco Alex, Newman-Norlund Roger, Fridriksson Julius, Rorden Christopher, Bonilha Leonardo

机构信息

University of South Carolina.

Emory University.

出版信息

Res Sq. 2023 Jul 3:rs.3.rs-3126126. doi: 10.21203/rs.3.rs-3126126/v1.

Abstract

Emerging evidence suggests that post-stroke aphasia severity depends on the integrity of the brain beyond the stroke lesion. While measures of lesion anatomy and brain integrity combine synergistically to explain aphasic symptoms, significant interindividual variability remains unaccounted for. A possible explanatory factor may be the spatial distribution of brain atrophy beyond the lesion. This includes not just the specific brain areas showing atrophy, but also distinct three-dimensional patterns of atrophy. Here, we tested whether deep learning with Convolutional Neural Networks (CNN) on whole brain morphometry (i.e., segmented tissue volumes) and lesion anatomy can better predict which individuals with chronic stroke (N=231) have severe aphasia, and whether encoding spatial dependencies in the data might be capable of improving predictions by identifying unique individualized spatial patterns. We observed that CNN achieves significantly higher accuracy and F1 scores than Support Vector Machine (SVM), even when the SVM is nonlinear or integrates linear and nonlinear dimensionality reduction techniques. Performance parity was only achieved when the SVM was directly trained on the latent features learned by the CNN. Saliency maps demonstrated that the CNN leveraged widely distributed patterns of brain atrophy predictive of aphasia severity, whereas the SVM focused almost exclusively on the area around the lesion. Ensemble clustering of CNN saliency maps revealed distinct morphometry patterns that were unrelated to lesion size, highly consistent across individuals, and implicated unique brain networks associated with different cognitive processes as measured by the wider neuroimaging literature. Individualized predictions of severity depended on both ipsilateral and contralateral features outside of the location of stroke. Our findings illustrate that three-dimensional network distributions of atrophy in individuals with aphasia are directly associated with aphasia severity, underscoring the potential for deep learning to improve prognostication of behavioral outcomes from neuroimaging data, and highlighting the prospective benefits of interrogating spatial dependence at different scales in multivariate feature space.

摘要

新出现的证据表明,中风后失语症的严重程度取决于中风病灶以外大脑的完整性。虽然病灶解剖结构和大脑完整性的测量方法协同作用来解释失语症状,但个体间的显著差异仍无法得到解释。一个可能的解释因素可能是病灶以外大脑萎缩的空间分布。这不仅包括显示萎缩的特定脑区,还包括不同的三维萎缩模式。在此,我们测试了基于全脑形态计量学(即分割后的组织体积)和病灶解剖结构,使用卷积神经网络(CNN)进行深度学习是否能更好地预测哪些慢性中风患者(N = 231)患有严重失语症,以及在数据中编码空间依赖性是否能够通过识别独特的个体空间模式来改善预测。我们观察到,即使支持向量机(SVM)是非线性的,或者集成了线性和非线性降维技术,CNN的准确率和F1分数也显著高于SVM。只有当SVM直接在CNN学习到的潜在特征上进行训练时,才能实现性能相当。显著性映射表明,CNN利用了广泛分布的大脑萎缩模式来预测失语症严重程度,而SVM几乎只关注病灶周围区域。CNN显著性映射的集成聚类揭示了与病灶大小无关、个体间高度一致且涉及由更广泛的神经影像学文献测量的与不同认知过程相关的独特脑网络的不同形态计量学模式。严重程度的个体化预测取决于中风部位以外的同侧和对侧特征。我们的研究结果表明,失语症患者萎缩的三维网络分布与失语症严重程度直接相关,强调了深度学习改善从神经影像数据预测行为结果的潜力,并突出了在多变量特征空间中在不同尺度上探究空间依赖性的潜在益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b83/10350198/b682b82de278/nihpp-rs3126126v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验