Suppr超能文献

使用可扩展线性 Fisher 判别分析对乳腺 X 线片中的微钙化进行分类。

Classification of micro-calcification in mammograms using scalable linear Fisher discriminant analysis.

机构信息

Aberystwyth University, Aberystwyth, UK.

Norfolk and Norwich University Hospital, Norwich, UK.

出版信息

Med Biol Eng Comput. 2018 Aug;56(8):1475-1485. doi: 10.1007/s11517-017-1774-z. Epub 2018 Jan 25.

Abstract

Breast cancer is one of the major causes of death in women. Computer Aided Diagnosis (CAD) systems are being developed to assist radiologists in early diagnosis. Micro-calcifications can be an early symptom of breast cancer. Besides detection, classification of micro-calcification as benign or malignant is essential in a complete CAD system. We have developed a novel method for the classification of benign and malignant micro-calcification using an improved Fisher Linear Discriminant Analysis (LDA) approach for the linear transformation of segmented micro-calcification data in combination with a Support Vector Machine (SVM) variant to classify between the two classes. The results indicate an average accuracy equal to 96% which is comparable to state-of-the art methods in the literature. Graphical Abstract Classification of Micro-calcification in Mammograms using Scalable Linear Fisher Discriminant Analysis.

摘要

乳腺癌是女性死亡的主要原因之一。正在开发计算机辅助诊断 (CAD) 系统以协助放射科医生进行早期诊断。微钙化可能是乳腺癌的早期症状。除了检测之外,良性和恶性微钙化的分类对于完整的 CAD 系统至关重要。我们开发了一种使用改进的 Fisher 线性判别分析 (LDA) 方法对分割后的微钙化数据进行线性变换的新方法,结合支持向量机 (SVM) 变体对两种类型进行分类,用于良性和恶性微钙化的分类。结果表明,平均准确率等于 96%,与文献中的最新方法相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d764/6061516/a8470a89c4c0/11517_2017_1774_Figc_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验