Suppr超能文献

用于生物修复的生物强化:菌株选择的挑战。

Bioaugmentation for bioremediation: the challenge of strain selection.

作者信息

Thompson Ian P, van der Gast Christopher J, Ciric Lena, Singer Andrew C

机构信息

Environmental Biotechnology Section, NERC Centre for Ecology and Hydrology - Oxford, Mansfield Road, Oxford, OX1 3SR, UK.

出版信息

Environ Microbiol. 2005 Jul;7(7):909-15. doi: 10.1111/j.1462-2920.2005.00804.x.

Abstract

Despite its long-term use in bioremediation, bioaugmentation of contaminated sites with microbial cells continues to be a source of controversy within environmental microbiology. This largely results from its notoriously unreliable performance record. In this article, we argue that the unpredictable nature of the approach comes from the initial strain selection step. Up until now, this has been dictated by the search for catabolically competent microorganisms, with little or no consideration given to other essential features that are required to be functionally active and persistent in target habitats. We describe how technical advances in molecular biology and analytical chemistry, now enable assessments of the functional diversity and spatial distribution of microbial communities to be made in situ. These advances now enable microbial populations, targeted for exploitation, to be differentiated to the cell level, an advance that is bound to improve microbial selection and exploitation. We argue that this information-based approach is already proving to be more effective than the traditional 'black-box' approach of strain selection. The future perspectives and opportunities for improving selection of effective microbial strains for bioaugmentation are also discussed.

摘要

尽管微生物细胞生物强化技术在生物修复中的长期应用,但在受污染场地进行生物强化在环境微生物学领域仍然存在争议。这主要是由于其表现出的可靠性记录不佳。在本文中,我们认为该方法的不可预测性源于最初的菌株筛选步骤。到目前为止,这一直由寻找具有分解代谢能力的微生物所主导,而很少或根本没有考虑在目标栖息地发挥功能活性和持久性所需的其他基本特征。我们描述了分子生物学和分析化学的技术进步如何能够在原位评估微生物群落的功能多样性和空间分布。这些进展现在能够将用于开发的微生物种群在细胞水平上进行区分,这一进展必将改善微生物的筛选和利用。我们认为这种基于信息的方法已被证明比传统的“黑箱”菌株筛选方法更有效。本文还讨论了未来改进生物强化有效微生物菌株筛选的前景和机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验