Pandey Janmejay, Chauhan Archana, Jain Rakesh K
Institute of Microbial Technology, Chandigarh, India.
FEMS Microbiol Rev. 2009 Mar;33(2):324-75. doi: 10.1111/j.1574-6976.2008.00133.x. Epub 2008 Oct 25.
Application of microbial metabolic potential (bioremediation) is accepted as an environmentally benign and economical measure for decontamination of polluted environments. Bioremediation methods are generally categorized into ex situ and in situ bioremediation. Although in situ bioremediation methods have been in use for two to three decades, they have not yet yielded the expected results. Their limited success has been attributed to reduced ecological sustainability under environmental conditions. An important determinant of sustainability of in situ bioremediation is pollutant bioavailability. Microbial chemotaxis is postulated to improve pollutant bioavailability significantly; consequently, application of chemotactic microorganisms can considerably enhance the performance of in situ degradation. The environmental fate of degradative microorganisms and the ecological consequence of intervention constitute other important descriptors for the efficiency and sustainability of bioremediation processes. Integrative use of culture-dependent, culture-independent methods (e.g. amplified rDNA restriction analysis, terminal restriction fragment length polymorphism, denaturing/thermal gradient gel electrophoresis, phospholipid fatty acid, etc.), computational and statistical analyses has enabled successful monitoring of the above aspects. The present review provides a detailed insight into some of the key factors that affect the efficiency of in situ bioremediation along with a comprehensive account of the integrative approaches used for assessing the ecological sustainability of processes. The review also discusses the possibility of developing suicidal genetically engineered microorganisms for optimized and controlled in situ bioremediation.
微生物代谢潜能(生物修复)的应用被认为是一种对污染环境进行净化的环境友好且经济的措施。生物修复方法通常分为异位生物修复和原位生物修复。尽管原位生物修复方法已经使用了二三十年,但尚未取得预期效果。其有限的成功归因于环境条件下生态可持续性的降低。原位生物修复可持续性的一个重要决定因素是污染物的生物可利用性。据推测,微生物趋化性可显著提高污染物的生物可利用性;因此,应用趋化性微生物可大大提高原位降解的性能。降解微生物的环境归宿以及干预的生态后果是生物修复过程效率和可持续性的其他重要描述指标。综合使用依赖培养、不依赖培养的方法(如扩增rDNA限制性分析、末端限制性片段长度多态性、变性/温度梯度凝胶电泳、磷脂脂肪酸等)、计算和统计分析,已能够成功监测上述方面。本综述详细深入地探讨了一些影响原位生物修复效率的关键因素,并全面介绍了用于评估该过程生态可持续性的综合方法。综述还讨论了开发自杀性基因工程微生物以实现优化和可控原位生物修复的可能性。