Suppr超能文献

大鼠畸变产物耳声发射起始适应和对侧抑制的生理机制

Physiological mechanisms of onset adaptation and contralateral suppression of DPOAEs in the rat.

作者信息

Relkin E M, Sterns A, Azeredo W, Prieve B A, Woods C I

机构信息

Institute for Sensory Research, Syracuse University, Syracuse, NY, USA.

出版信息

J Assoc Res Otolaryngol. 2005 Jun;6(2):119-35. doi: 10.1007/s10162-004-5047-9. Epub 2005 Jun 10.

Abstract

An investigation was undertaken to measure medial olivocochlear (MOC) reflexes in anesthetized rats before and after sectioning of the middle-ear muscles. Distortion product otoacoustic emission (DPOAE) magnitude and phase temporal responses were measured ipsilaterally to study MOC-mediated "DPOAE onset adaptation" and in the presence of a contralateral noise to study MOC-mediated contralateral "suppression" (terms as used by previous researchers). Distortion product otoacoustic emission onset adaptation and contralateral suppression had predictable changes in direction of magnitude and phase that were dependent on the input-output function. After sectioning of the middle-ear muscles (MEMs), DPOAE onset adaptation and contralateral suppression were greatly reduced, and there were little, if any, changes in phase. These "residual" changes were interpreted as a result of the MOC reflex. The results suggest that what appears to be DPOAE onset adaptation and contralateral suppression can be mediated primarily by MEM reflexes. When studying MOC effects on otoacoustic emissions (OAEs) using acoustic stimulation, it is necessary to make recordings over a span of stimulus levels. In addition, looking at both magnitude and phase of the OAE may help separate what is due to the MOC reflex from MEM reflex.

摘要

一项研究旨在测量麻醉大鼠中耳肌切断前后的内侧橄榄耳蜗(MOC)反射。测量同侧的畸变产物耳声发射(DPOAE)幅度和相位时间响应,以研究MOC介导的“DPOAE起始适应”,并在存在对侧噪声的情况下研究MOC介导的对侧“抑制”(术语如先前研究人员所使用)。畸变产物耳声发射起始适应和对侧抑制在幅度和相位方向上有可预测的变化,这取决于输入输出函数。中耳肌(MEMs)切断后,DPOAE起始适应和对侧抑制大大降低,并且相位几乎没有变化(如果有变化的话)。这些“残余”变化被解释为MOC反射的结果。结果表明,看似DPOAE起始适应和对侧抑制主要可由MEM反射介导。在使用声刺激研究MOC对耳声发射(OAE)的影响时,有必要在一系列刺激水平上进行记录。此外,观察OAE的幅度和相位可能有助于将由MOC反射引起的与由MEM反射引起的区分开来。

相似文献

1
Physiological mechanisms of onset adaptation and contralateral suppression of DPOAEs in the rat.
J Assoc Res Otolaryngol. 2005 Jun;6(2):119-35. doi: 10.1007/s10162-004-5047-9. Epub 2005 Jun 10.
2
Contralateral suppression of distortion product otoacoustic emissions and the middle-ear muscle reflex in human ears.
Hear Res. 2008 Mar;237(1-2):66-75. doi: 10.1016/j.heares.2007.12.004. Epub 2007 Dec 28.
4
Simultaneous measurement of noise-activated middle-ear muscle reflex and stimulus frequency otoacoustic emissions.
J Assoc Res Otolaryngol. 2006 Jun;7(2):125-39. doi: 10.1007/s10162-006-0028-9. Epub 2006 Mar 28.
9
Identifying the Origin of Effects of Contralateral Noise on Transient Evoked Otoacoustic Emissions in Unanesthetized Mice.
J Assoc Res Otolaryngol. 2017 Aug;18(4):543-553. doi: 10.1007/s10162-017-0616-x. Epub 2017 Mar 16.
10
Effects of anesthesia on efferent-mediated adaptation of the DPOAE.
J Assoc Res Otolaryngol. 2002 Sep;3(3):362-73. doi: 10.1007/s101620020044. Epub 2002 Feb 27.

引用本文的文献

1
The function of the tensor tympani muscle: a comprehensive review of the literature.
Anat Cell Biol. 2022 Jun 30;55(2):113-117. doi: 10.5115/acb.21.032. Epub 2022 May 19.
2
The Middle Ear Muscle Reflex in Rat: Developing a Biomarker of Auditory Nerve Degeneration.
Ear Hear. 2018 May/Jun;39(3):605-614. doi: 10.1097/AUD.0000000000000520.
3
Differentiating Middle Ear and Medial Olivocochlear Effects on Transient-Evoked Otoacoustic Emissions.
J Assoc Res Otolaryngol. 2017 Aug;18(4):529-542. doi: 10.1007/s10162-017-0621-0. Epub 2017 Apr 21.
4
Identifying the Origin of Effects of Contralateral Noise on Transient Evoked Otoacoustic Emissions in Unanesthetized Mice.
J Assoc Res Otolaryngol. 2017 Aug;18(4):543-553. doi: 10.1007/s10162-017-0616-x. Epub 2017 Mar 16.
5
The middle ear muscle reflex in the diagnosis of cochlear neuropathy.
Hear Res. 2016 Feb;332:29-38. doi: 10.1016/j.heares.2015.11.005. Epub 2015 Nov 30.
6
8
Ultrastructure of spines and associated terminals on brainstem neurons controlling auditory input.
Brain Res. 2013 Jun 21;1516:1-10. doi: 10.1016/j.brainres.2013.04.020. Epub 2013 Apr 18.
9
Tensor tympani motoneurons receive mostly excitatory synaptic inputs.
Anat Rec (Hoboken). 2013 Jan;296(1):133-45. doi: 10.1002/ar.22620. Epub 2012 Nov 15.
10
Effects of cross-modal selective attention on the sensory periphery: cochlear sensitivity is altered by selective attention.
Neuroscience. 2012 Oct 25;223:325-32. doi: 10.1016/j.neuroscience.2012.07.062. Epub 2012 Aug 4.

本文引用的文献

2
Medial olivocochlear efferent reflex in humans: otoacoustic emission (OAE) measurement issues and the advantages of stimulus frequency OAEs.
J Assoc Res Otolaryngol. 2003 Dec;4(4):521-40. doi: 10.1007/s10162-002-3037-3. Epub 2003 Jun 13.
3
Generation of DPOAEs in the guinea pig.
Hear Res. 2003 Apr;178(1-2):106-17. doi: 10.1016/s0378-5955(03)00064-9.
6
A multifrequency method for determining cochlear efferent activity.
J Assoc Res Otolaryngol. 2002 Mar;3(1):16-25. doi: 10.1007/s101620010089.
8
Effects of olivocochlear feedback on distortion product otoacoustic emissions in guinea pig.
J Assoc Res Otolaryngol. 2001 Sep;2(3):268-78. doi: 10.1007/s101620010047.
9
Adaptation of distortion product otoacoustic emission in humans.
J Assoc Res Otolaryngol. 2001 Mar;2(1):31-40. doi: 10.1007/s101620010066.
10
Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength.
J Neurosci. 2000 Jun 15;20(12):4701-7. doi: 10.1523/JNEUROSCI.20-12-04701.2000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验