Guinan John J, Backus Bradford C, Lilaonitkul Watjana, Aharonson Vered
Eaton-Peabody Laboratory of Auditory Physiology, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.
J Assoc Res Otolaryngol. 2003 Dec;4(4):521-40. doi: 10.1007/s10162-002-3037-3. Epub 2003 Jun 13.
Otoacoustic emissions (OAEs) are useful for studying medial olivocochlear (MOC) efferents, but several unresolved methodological issues cloud the interpretation of the data they produce. Most efferent assays use a "probe stimulus" to produce an OAE and an "elicitor stimulus" to evoke efferent activity and thereby change the OAE. However, little attention has been given to whether the probe stimulus itself elicits efferent activity. In addition, most studies use only contralateral ( re the probe) elicitors and do not include measurements to rule out middle-ear muscle (MEM) contractions. Here we describe methods to deal with these problems and present a new efferent assay based on stimulus frequency OAEs (SFOAEs) that incorporates these methods. By using a postelicitor window, we make measurements in individual subjects of efferent effects from contralateral, ipsilateral, and bilateral elicitors. Using our SFOAE assay, we demonstrate that commonly used probe sounds (clicks, tone pips, and tone pairs) elicit efferent activity, by themselves. Thus, results of efferent assays using these probe stimuli can be confounded by unwanted efferent activation. In contrast, the single 40 dB SPL tone used as the probe sound for SFOAE-based measurements evoked little or no efferent activity. Since they evoke efferent activation, clicks, tone pips, and tone pairs can be used in an adaptation efferent assay, but such paradigms are limited in measurement scope compared to paradigms that separate probe and elicitor stimuli. Finally, we describe tests to distinguish middle-ear muscle (MEM) effects from MOC effects for a number of OAE assays and show results from SFOAE-based tests. The SFOAE assay used in this study provides a sensitive, flexible, frequency-specific assay of medial efferent activation that uses a low-level probe sound that elicits little or no efferent activity, and thus provides results that can be interpreted without the confound of unintended efferent activation.
耳声发射(OAEs)对于研究内侧橄榄耳蜗(MOC)传出神经很有用,但一些未解决的方法学问题使它们所产生数据的解释变得模糊不清。大多数传出神经检测使用“探测刺激”来产生耳声发射,并使用“引发刺激”来诱发传出神经活动,从而改变耳声发射。然而,对于探测刺激本身是否会诱发传出神经活动,人们关注甚少。此外,大多数研究仅使用对侧(相对于探测刺激)引发刺激,并且没有进行测量以排除中耳肌肉(MEM)收缩的影响。在此,我们描述了处理这些问题的方法,并基于刺激频率耳声发射(SFOAEs)提出了一种新的传出神经检测方法,该方法纳入了这些手段。通过使用引发刺激后的窗口,我们在个体受试者中测量了来自对侧、同侧和双侧引发刺激的传出神经效应。使用我们的SFOAE检测方法,我们证明常用的探测声音(短声、短纯音和音对)自身会诱发传出神经活动。因此,使用这些探测刺激的传出神经检测结果可能会因不必要的传出神经激活而混淆。相比之下,用作基于SFOAE测量的探测声音的40 dB SPL单音诱发的传出神经活动很少或没有。由于短声、短纯音和音对会诱发传出神经激活,因此它们可用于适应性传出神经检测,但与将探测刺激和引发刺激分开的检测范式相比,此类范式在测量范围上受到限制。最后,我们描述了一些耳声发射检测方法中区分中耳肌肉(MEM)效应和MOC效应的测试,并展示了基于SFOAE测试的结果。本研究中使用的SFOAE检测方法提供了一种灵敏、灵活、频率特异性的内侧传出神经激活检测方法,该方法使用低水平的探测声音,诱发的传出神经活动很少或没有传出神经活动,因此所提供结果的解释不会受到意外传出神经激活的干扰。