Strawderman R L, Parzen M I, Wells M T
Department of Biostatistics, University of Michigan, Ann Arbor 48109-2029, USA.
Biometrics. 1997 Dec;53(4):1399-415.
In survival analysis, estimates of median survival times in homogeneous samples are often based on the Kaplan-Meier estimator of the survivor function. Confidence intervals for quantiles, such as median survival, are typically constructed via large sample theory or the bootstrap. The former has suspect accuracy for small sample sizes under moderate censoring and the latter is computationally intensive. In this paper, improvements on so-called test-based intervals and reflected intervals (cf., Slud, Byar, and Green, 1984, Biometrics 40, 587-600) are sought. Using the Edgeworth expansion for the distribution of the studentized Nelson-Aalen estimator derived in Strawderman and Wells (1997, Journal of the American Statistical Association 92), we propose a method for producing more accurate confidence intervals for quantiles with randomly censored data. The intervals are very simple to compute, and numerical results using simulated data show that our new test-based interval outperforms commonly used methods for computing confidence intervals for small sample sizes and/or heavy censoring, especially with regard to maintaining specified coverage.
在生存分析中,同质样本中中位生存时间的估计通常基于生存函数的Kaplan-Meier估计量。分位数的置信区间,如中位生存时间的置信区间,通常通过大样本理论或自助法构建。在适度删失情况下,前者对于小样本量的准确性存疑,而后者计算量很大。本文寻求对所谓的基于检验的区间和反射区间(参见Slud、Byar和Green,1984年,《生物统计学》40卷,587 - 600页)进行改进。利用Strawderman和Wells(1997年,《美国统计协会杂志》92卷)中推导的学生化Nelson-Aalen估计量分布的Edgeworth展开式,我们提出了一种为随机删失数据的分位数生成更准确置信区间的方法。这些区间计算非常简单,使用模拟数据的数值结果表明,我们新的基于检验的区间在小样本量和/或重度删失情况下计算置信区间时优于常用方法,尤其是在保持指定的覆盖率方面。