Goshima Gohta, Vale Ronald D
The Howard Hughes Medical Institute and the Department of Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, CA 94107, USA.
Mol Biol Cell. 2005 Aug;16(8):3896-907. doi: 10.1091/mbc.e05-02-0118. Epub 2005 Jun 15.
Constructing a mitotic spindle requires the coordinated actions of several kinesin motor proteins. Here, we have visualized the dynamics of five green fluorescent protein (GFP)-tagged mitotic kinesins (class 5, 6, 8, 13, and 14) in live Drosophila Schneider cell line (S2), after first demonstrating that the GFP-tag does not interfere with the mitotic functions of these kinesins using an RNA interference (RNAi)-based rescue strategy. Class 8 (Klp67A) and class 14 (Ncd) kinesin are sequestered in an active form in the nucleus during interphase and engage their microtubule targets upon nuclear envelope breakdown (NEB). Relocalization of Klp67A to the cytoplasm using a nuclear export signal resulted in the disassembly of the interphase microtubule array, providing support for the hypothesis that this kinesin class possesses microtubule-destabilizing activity. The interactions of Kinesin-5 (Klp61F) and -6 (Pavarotti) with microtubules, on the other hand, are activated and inactivated by Cdc2 phosphorylation, respectively, as shown by examining localization after mutating Cdc2 consensus sites. The actions of microtubule-destabilizing kinesins (class 8 and 13 [Klp10A]) seem to be controlled by cell cycle-dependent changes in their localizations. Klp10A, concentrated on microtubule plus ends in interphase and prophase, relocalizes to centromeres and spindle poles upon NEB and remains at these sites throughout anaphase. Consistent with this localization, RNAi analysis showed that this kinesin contributes to chromosome-to-pole movement during anaphase A. Klp67A also becomes kinetochore associated upon NEB, but the majority of the population relocalizes to the central spindle by the timing of anaphase A onset, consistent with our RNAi result showing no effect of depleting this motor on anaphase A. These results reveal a diverse spectrum of regulatory mechanisms for controlling the localization and function of five mitotic kinesins at different stages of the cell cycle.
构建有丝分裂纺锤体需要多种驱动蛋白的协同作用。在此,我们在活的果蝇施奈德细胞系(S2)中观察了五种绿色荧光蛋白(GFP)标记的有丝分裂驱动蛋白(5、6、8、13和14类)的动态变化,此前我们先用基于RNA干扰(RNAi)的拯救策略证明了GFP标签不会干扰这些驱动蛋白的有丝分裂功能。8类(Klp67A)和14类(Ncd)驱动蛋白在间期以活性形式被隔离在细胞核中,并在核膜破裂(NEB)时与它们的微管靶点结合。使用核输出信号将Klp67A重新定位到细胞质中导致间期微管阵列的解体,为这一类驱动蛋白具有微管解聚活性的假说提供了支持。另一方面,通过检查Cdc2共有位点突变后的定位情况发现,驱动蛋白-5(Klp61F)和-6(Pavarotti)与微管的相互作用分别被Cdc2磷酸化激活和失活。微管解聚驱动蛋白(8类和13类[Klp10A])的作用似乎受其定位的细胞周期依赖性变化控制。KlpA10在间期和前期集中在微管正端,在NEB时重新定位到着丝粒和纺锤体极,并在整个后期一直停留在这些位点。与这种定位一致,RNAi分析表明这种驱动蛋白在后期A中有助于染色体向极的移动。Klp67A在NEB时也与动粒结合,但在后期A开始时,大多数Klp67A重新定位到中央纺锤体,这与我们的RNAi结果一致,即耗尽这种驱动蛋白对后期A没有影响。这些结果揭示了在细胞周期不同阶段控制五种有丝分裂驱动蛋白定位和功能的多种调控机制。