Suppr超能文献

驱动蛋白-14尾部:双微管结合结构域通过紧密的微管交联和强力滑动驱动纺锤体形态发生。

The Kinesin-14 tail: Dual microtubule binding domains drive spindle morphogenesis through tight microtubule cross-linking and robust sliding.

作者信息

Ems-McClung Stephanie C, Cassity MacKenzie, Prasannajith Anjaly, Walczak Claire E

机构信息

IUSM - Bloomington, Bloomington, IN 47405.

Department of Biology, Indiana University, Bloomington, IN 47405.

出版信息

Mol Biol Cell. 2025 Jun 1;36(6):ar72. doi: 10.1091/mbc.E25-02-0083. Epub 2025 May 6.

Abstract

Proper spindle assembly requires the Kinesin-14 (K-14) family of motors to organize microtubules (MT) into the bipolar spindle by cross-linking and sliding antiparallel and parallel MTs through their motor and tail domains. How they mediate these different activities is unclear. We identified two MT-binding domains (MBD1 and MBD2) within the K-14 XCTK2 tail and found that MBD1 MT affinity was weaker than MBD2. Comparable with full-length GFP-XCTK2 wild-type protein (GX-WT), GFP-XCTK2 containing the MBD1 mutations (GX-MBD1) stimulated spindle assembly, localized moderately on the spindle, and formed narrow spindles. In contrast, GX-MBD2 only partially stimulated spindle assembly, localized weakly on the spindle, and formed shorter spindles. Biochemical reconstitution of MT cross-linking and sliding demonstrated that GX-MBD2 slid antiparallel MTs faster than GX-WT and GX-MBD1. However, GX-WT and GX-MBD1 statically cross-linked the majority of parallel MTs, whereas GX-MBD2 equally slid and statically cross-linked parallel MTs without affecting their sliding velocity. These results provide a mechanism by which the two different MBDs in the K-14 tail balance antiparallel MT sliding velocity (MBD1) and tight parallel MT cross-linking (MBD2), which are important for spindle assembly and localization, and provide a basis for characterizing how molecular motors organize MTs within the spindle.

摘要

正确的纺锤体组装需要驱动蛋白-14(K-14)家族的马达蛋白通过其马达结构域和尾部结构域交联并滑动反平行和平行微管,将微管(MT)组织成双极纺锤体。它们如何介导这些不同的活动尚不清楚。我们在K-14 XCTK2尾部鉴定出两个微管结合结构域(MBD1和MBD2),发现MBD1与微管的亲和力比MBD2弱。与全长绿色荧光蛋白-XCTK2野生型蛋白(GX-WT)相比,含有MBD1突变的绿色荧光蛋白-XCTK2(GX-MBD1)刺激纺锤体组装,适度定位于纺锤体上,并形成狭窄的纺锤体。相比之下,GX-MBD2仅部分刺激纺锤体组装,在纺锤体上定位较弱,并形成较短的纺锤体。微管交联和滑动的生化重建表明,GX-MBD2使反平行微管滑动的速度比GX-WT和GX-MBD1快。然而,GX-WT和GX-MBD1静态交联了大多数平行微管,而GX-MBD2在不影响其滑动速度的情况下,同样使平行微管滑动并静态交联。这些结果提供了一种机制,通过该机制K-14尾部的两个不同MBD平衡反平行微管滑动速度(MBD1)和紧密的平行微管交联(MBD2),这对纺锤体组装和定位很重要,并为表征分子马达如何在纺锤体内组织微管提供了基础。

相似文献

本文引用的文献

1
Mechanism and regulation of kinesin motors.驱动蛋白的作用机制与调控
Nat Rev Mol Cell Biol. 2025 Feb;26(2):86-103. doi: 10.1038/s41580-024-00780-6. Epub 2024 Oct 11.
3
Bridging structural and cell biology with cryo-electron microscopy.用冷冻电镜将结构和细胞生物学联系起来。
Nature. 2024 Apr;628(8006):47-56. doi: 10.1038/s41586-024-07198-2. Epub 2024 Apr 3.
4
Mechanisms underlying spindle assembly and robustness.纺锤体组装和稳定性的机制。
Nat Rev Mol Cell Biol. 2023 Aug;24(8):523-542. doi: 10.1038/s41580-023-00584-0. Epub 2023 Mar 28.
5
Dynein at the kinetochore.动粒处的动力蛋白。
J Cell Sci. 2023 Mar 1;136(5). doi: 10.1242/jcs.220269. Epub 2023 Mar 2.
10
Structure and Mechanics of Dynein Motors.动力蛋白的结构与力学性质。
Annu Rev Biophys. 2021 May 6;50:549-574. doi: 10.1146/annurev-biophys-111020-101511.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验