Good Levi B, Sabesan Shivkumar, Marsh Steven T, Tsakalis Konstantinos, Treiman David M, Iasemidis Leon D
University of Texas Southwestern, Dallas, TX, USA.
Nonlinear Dynamics Psychol Life Sci. 2010 Oct;14(4):411-34.
Epilepsy is a dynamical disorder with intermittent crises (seizures) that until recently were considered unpredictable. In this study, we investigated the predictability of epileptic seizures in chronically epileptic rats as a first step towards a subsequent timely intervention for seizure control. We look at the epileptic brain as a nonlinear complex system that undergoes spatio-temporal state transitions and the Lyapunov exponents as indices of its stability. We estimated the spatial synchronization or desynchronization of the maximum short-term Lyapunov exponents (STLmax, approximate measures of chaos) among multiple brain sites over days of electroencephalographic (EEG) recordings from 5 rats that had developed chronic epilepsy according to the lithium pilocarpine rodent model of epilepsy. We utilized this synchronization of EEG dynamics for the construction of a robust seizure prediction algorithm. The parameters of the algorithm were optimized using receiver operator curves (ROCs) on training EEG datasets from each rat for the algorithm to provide maximum sensitivity and specificity in the prediction of their seizures. The performance of the algorithm was then tested on long-term testing EEG datasets per rat. The thus optimized prediction algorithm on the testing datasets over all rats yielded a seizure prediction mean sensitivity of 85.9%, specificity of 0.180 false predictions per hour, and prediction time of 67.6 minutes prior to a seizure onset. This study provides evidence that prediction of seizures is feasible through analysis of the EEG within the framework of nonlinear dynamics, and thus paves the way for just-in-time pharmacological or physiological inter-ventions to abort seizures tens of minutes before their occurrence.
癫痫是一种具有间歇性发作(惊厥)的动态疾病,直到最近人们还认为其发作是不可预测的。在本研究中,我们调查了慢性癫痫大鼠癫痫发作的可预测性,作为后续及时干预以控制癫痫发作的第一步。我们将癫痫大脑视为一个经历时空状态转换的非线性复杂系统,并将李雅普诺夫指数作为其稳定性指标。我们根据锂 - 匹罗卡品啮齿动物癫痫模型,对5只已发展为慢性癫痫的大鼠进行了数天的脑电图(EEG)记录,估计了多个脑区之间最大短期李雅普诺夫指数(STLmax,混沌的近似度量)的空间同步或去同步情况。我们利用脑电图动力学的这种同步性构建了一种强大的癫痫发作预测算法。使用来自每只大鼠的训练脑电图数据集上的接收者操作曲线(ROC)对算法参数进行优化,以使算法在预测其癫痫发作时提供最大的敏感性和特异性。然后在每只大鼠的长期测试脑电图数据集上测试算法的性能。在所有大鼠的测试数据集上经过如此优化的预测算法,癫痫发作预测的平均敏感性为85.9%,特异性为每小时0.180次错误预测,发作前的预测时间为67.6分钟。这项研究提供了证据,表明通过在非线性动力学框架内分析脑电图来预测癫痫发作是可行的,从而为在癫痫发作发生前几十分钟进行及时的药物或生理干预以终止发作铺平了道路。