Suppr超能文献

癫痫发作预测机器学习方法在不同数据库中的性能:基于样本和警报的视角。

On the performance of seizure prediction machine learning methods across different databases: the sample and alarm-based perspectives.

作者信息

Andrade Inês, Teixeira César, Pinto Mauro

机构信息

University of Coimbra, Centre for Informatics and Systems, Department of Informatics Engineering, Coimbra, Portugal.

出版信息

Front Neurosci. 2024 Jul 15;18:1417748. doi: 10.3389/fnins.2024.1417748. eCollection 2024.

Abstract

Epilepsy affects 1% of the global population, with approximately one-third of patients resistant to anti-seizure medications (ASMs), posing risks of physical injuries and psychological issues. Seizure prediction algorithms aim to enhance the quality of life for these individuals by providing timely alerts. This study presents a patient-specific seizure prediction algorithm applied to diverse databases (EPILEPSIAE, CHB-MIT, AES, and Epilepsy Ecosystem). The proposed algorithm undergoes a standardized framework, including data preprocessing, feature extraction, training, testing, and postprocessing. Various databases necessitate adaptations in the algorithm, considering differences in data availability and characteristics. The algorithm exhibited variable performance across databases, taking into account sensitivity, FPR/h, specificity, and AUC score. This study distinguishes between sample-based approaches, which often yield better results by disregarding the temporal aspect of seizures, and alarm-based approaches, which aim to simulate real-life conditions but produce less favorable outcomes. Statistical assessment reveals challenges in surpassing chance levels, emphasizing the rarity of seizure events. Comparative analyses with existing studies highlight the complexity of standardized assessments, given diverse methodologies and dataset variations. Rigorous methodologies aiming to simulate real-life conditions produce less favorable outcomes, emphasizing the importance of realistic assumptions and comprehensive, long-term, and systematically structured datasets for future research.

摘要

癫痫影响着全球1%的人口,约三分之一的患者对抗癫痫药物(ASM)耐药,存在身体受伤和心理问题的风险。癫痫发作预测算法旨在通过提供及时警报来提高这些人的生活质量。本研究提出了一种针对特定患者的癫痫发作预测算法,并将其应用于不同的数据库(EPILEPSIAE、CHB-MIT、AES和癫痫生态系统)。所提出的算法经过一个标准化框架,包括数据预处理、特征提取、训练、测试和后处理。考虑到数据可用性和特征的差异,各种数据库需要对算法进行调整。该算法在不同数据库中的表现各异,考虑了敏感性、每小时误报率(FPR/h)、特异性和AUC分数。本研究区分了基于样本的方法和基于警报的方法,前者往往通过忽略癫痫发作的时间方面而产生更好的结果,后者旨在模拟现实生活条件但产生的结果不太理想。统计评估揭示了超越偶然水平的挑战,强调了癫痫发作事件的罕见性。与现有研究的比较分析突出了标准化评估的复杂性,因为方法和数据集存在差异。旨在模拟现实生活条件的严格方法产生的结果不太理想,强调了现实假设以及全面、长期和系统结构化数据集对未来研究的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb22/11284155/61329a853398/fnins-18-1417748-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验