Suppr超能文献

用于癫痫发作预测的同步变化的时空患者个体评估。

Spatio-temporal patient-individual assessment of synchronization changes for epileptic seizure prediction.

作者信息

Winterhalder Matthias, Schelter Björn, Maiwald Thomas, Brandt Armin, Schad Ariane, Schulze-Bonhage Andreas, Timmer Jens

机构信息

Freiburg Center for Data Analysis and Modeling, University of Freiburg, Eckerstr. 1, 79104 Freiburg, Germany.

出版信息

Clin Neurophysiol. 2006 Nov;117(11):2399-413. doi: 10.1016/j.clinph.2006.07.312. Epub 2006 Sep 26.

Abstract

OBJECTIVE

Abnormal synchronization of neurons plays a central role for the generation of epileptic seizures. Therefore, multivariate time series analysis techniques investigating relationships between the dynamics of different neural populations may offer advantages in predicting epileptic seizures.

METHODS

We applied a phase and a lag synchronization measure to a selected subset of multicontact intracranial EEG recordings and assessed changes in synchronization with respect to seizure prediction.

RESULTS

Patient individual results, group results, spatial aspects using focal and extra-focal electrode contacts as well as two evaluation schemes analyzing decreases and increases in synchronization were examined. Averaged sensitivity values of 60% are observed for a false prediction rate of 0.15 false predictions per hour, a seizure occurrence period of half an hour, and a prediction horizon of 10 min. For approximately half of all 21 patients, a statistically significant prediction performance is observed for at least one synchronization measure and evaluation scheme.

CONCLUSIONS

The results indicate that synchronization changes in the EEG dynamics preceding seizures can be used for seizure prediction. Nevertheless, the underlying pathogenic mechanisms differ and both decreases and increases in synchronization may precede epileptic seizures depending on the structures investigated.

SIGNIFICANCE

The prediction method, optimized values of intervention times, as well as preferred brain structures for the EEG recordings have to be determined for each patient individually offering the chance of a better patient-individual prediction performance.

摘要

目的

神经元的异常同步在癫痫发作的产生中起核心作用。因此,研究不同神经群体动态之间关系的多变量时间序列分析技术可能在预测癫痫发作方面具有优势。

方法

我们将相位和滞后同步测量应用于多触点颅内脑电图记录的选定子集,并评估与癫痫发作预测相关的同步变化。

结果

检查了患者个体结果、群体结果、使用局灶性和局灶外电极触点的空间方面以及分析同步性降低和增加的两种评估方案。在每小时0.15次错误预测的错误预测率、半小时的癫痫发作期和10分钟的预测范围下,观察到平均灵敏度值为60%。在所有21名患者中,约有一半至少在一种同步测量和评估方案下观察到具有统计学意义的预测性能。

结论

结果表明,癫痫发作前脑电图动态中的同步变化可用于癫痫发作预测。然而,潜在的致病机制不同,根据所研究的结构,同步性的降低和增加都可能先于癫痫发作。

意义

必须为每个患者单独确定预测方法、干预时间的优化值以及脑电图记录的首选脑结构,从而有机会获得更好的患者个体预测性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验