Suppr超能文献

预测和比较沙门氏菌-人类和沙门氏菌-拟南芥互作组。

Prediction and comparison of Salmonella-human and Salmonella-Arabidopsis interactomes.

机构信息

Forschungszentrum Jülich, Institute of Complex Systems (ICS-5), D-52425 Jülich, Germany.

出版信息

Chem Biodivers. 2012 May;9(5):991-1018. doi: 10.1002/cbdv.201100392.

Abstract

Salmonellosis caused by Salmonella bacteria is a food-borne disease and a worldwide health threat causing millions of infections and thousands of deaths every year. This pathogen infects an unusually broad range of host organisms including human and plants. A better understanding of the mechanisms of communication between Salmonella and its hosts requires identifying the interactions between Salmonella and host proteins. Protein-protein interactions (PPIs) are the fundamental building blocks of communication. Here, we utilize the prediction platform BIANA to obtain the putative Salmonella-human and Salmonella-Arabidopsis interactomes based on sequence and domain similarity to known PPIs. A gold standard list of Salmonella-host PPIs served to validate the quality of the human model. 24,726 and 10,926 PPIs comprising interactions between 38 and 33 Salmonella effectors and virulence factors with 9,740 human and 4,676 Arabidopsis proteins, respectively, were predicted. Putative hub proteins could be identified, and parallels between the two interactomes were discovered. This approach can provide insight into possible biological functions of so far uncharacterized proteins. The predicted interactions are available via a web interface which allows filtering of the database according to parameters provided by the user to narrow down the list of suspected interactions. The interactions are available via a web interface at http://sbi.imim.es/web/SHIPREC.php.

摘要

由沙门氏菌引起的沙门氏菌病是一种食源性疾病,也是一个全球性的健康威胁,每年导致数百万人感染和数千人死亡。这种病原体感染了包括人类和植物在内的异常广泛的宿主生物。更好地了解沙门氏菌与其宿主之间的通讯机制需要确定沙门氏菌与宿主蛋白之间的相互作用。蛋白质-蛋白质相互作用(PPIs)是通讯的基本构建块。在这里,我们利用预测平台 BIANA 基于序列和域相似性来获得基于已知 PPIs 的推定的沙门氏菌-人类和沙门氏菌-拟南芥相互作用组。沙门氏菌-宿主 PPIs 的黄金标准列表用于验证人类模型的质量。预测了分别由 38 个和 33 个沙门氏菌效应子和毒力因子与 9740 个人类和 4676 个拟南芥蛋白之间相互作用的 24726 个和 10926 个 PPI。可以鉴定推定的枢纽蛋白,并发现两个相互作用组之间的平行关系。这种方法可以深入了解迄今为止尚未表征的蛋白质的可能生物学功能。预测的相互作用可通过网络界面获得,该界面允许根据用户提供的参数过滤数据库,以缩小可疑相互作用列表的范围。该相互作用可通过网络界面 http://sbi.imim.es/web/SHIPREC.php 获得。

相似文献

1
Prediction and comparison of Salmonella-human and Salmonella-Arabidopsis interactomes.
Chem Biodivers. 2012 May;9(5):991-1018. doi: 10.1002/cbdv.201100392.
2
The current Salmonella-host interactome.
Proteomics Clin Appl. 2012 Jan;6(1-2):117-33. doi: 10.1002/prca.201100083. Epub 2011 Dec 27.
3
Predicting genome-scale Arabidopsis-Pseudomonas syringae interactome using domain and interolog-based approaches.
BMC Bioinformatics. 2014;15 Suppl 11(Suppl 11):S13. doi: 10.1186/1471-2105-15-S11-S13. Epub 2014 Oct 21.
4
BIPS: BIANA Interolog Prediction Server. A tool for protein-protein interaction inference.
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W147-51. doi: 10.1093/nar/gks553. Epub 2012 Jun 11.
5
Comparing human-Salmonella with plant-Salmonella protein-protein interaction predictions.
Front Microbiol. 2015 Jan 28;6:45. doi: 10.3389/fmicb.2015.00045. eCollection 2015.
6
AtPIN: Arabidopsis thaliana protein interaction network.
BMC Bioinformatics. 2009 Dec 31;10:454. doi: 10.1186/1471-2105-10-454.
7
Techniques for transferring host-pathogen protein interactions knowledge to new tasks.
Front Microbiol. 2015 Feb 2;6:36. doi: 10.3389/fmicb.2015.00036. eCollection 2015.
9
HPIDB--a unified resource for host-pathogen interactions.
BMC Bioinformatics. 2010 Oct 7;11 Suppl 6(Suppl 6):S16. doi: 10.1186/1471-2105-11-S6-S16.
10
PlaPPISite: a comprehensive resource for plant protein-protein interaction sites.
BMC Plant Biol. 2020 Feb 6;20(1):61. doi: 10.1186/s12870-020-2254-4.

引用本文的文献

1
Computational Approach for Detection and Analysis of Human-Virus Protein-Protein Interactions.
Methods Mol Biol. 2025;2927:115-126. doi: 10.1007/978-1-0716-4546-8_6.
2
mimicINT: A workflow for microbe-host protein interaction inference.
F1000Res. 2025 Mar 28;14:128. doi: 10.12688/f1000research.160063.2. eCollection 2025.
4
Computational models for prediction of protein-protein interaction in rice and .
Front Plant Sci. 2023 Feb 1;13:1046209. doi: 10.3389/fpls.2022.1046209. eCollection 2022.
5
Host-pathogen protein-nucleic acid interactions: A comprehensive review.
Comput Struct Biotechnol J. 2022 Aug 4;20:4415-4436. doi: 10.1016/j.csbj.2022.08.001. eCollection 2022.
7
Computational Biology and Machine Learning Approaches to Understand Mechanistic Microbiome-Host Interactions.
Front Microbiol. 2021 May 11;12:618856. doi: 10.3389/fmicb.2021.618856. eCollection 2021.
8
The MERS-CoV Receptor DPP4 as a Candidate Binding Target of the SARS-CoV-2 Spike.
iScience. 2020 Jun 26;23(6):101160. doi: 10.1016/j.isci.2020.101160. Epub 2020 May 13.
9
In silico unravelling pathogen-host signaling cross-talks via pathogen mimicry and human protein-protein interaction networks.
Comput Struct Biotechnol J. 2019 Dec 27;18:100-113. doi: 10.1016/j.csbj.2019.12.008. eCollection 2020.
10
Inter-Species/Host-Parasite Protein Interaction Predictions Reviewed.
Curr Bioinform. 2018 Aug;13(4):396-406. doi: 10.2174/1574893613666180108155851.

本文引用的文献

1
The current Salmonella-host interactome.
Proteomics Clin Appl. 2012 Jan;6(1-2):117-33. doi: 10.1002/prca.201100083. Epub 2011 Dec 27.
4
New insights into pathogen recognition.
Expert Rev Anti Infect Ther. 2011 Aug;9(8):577-9. doi: 10.1586/eri.11.73.
5
Evidence for network evolution in an Arabidopsis interactome map.
Science. 2011 Jul 29;333(6042):601-7. doi: 10.1126/science.1203877.
6
Prediction of protein-protein interactions between Ralstonia solanacearum and Arabidopsis thaliana.
Amino Acids. 2012 Jun;42(6):2363-71. doi: 10.1007/s00726-011-0978-z. Epub 2011 Jul 24.
7
A predicted protein-protein interaction network of the filamentous fungus Neurospora crassa.
Mol Biosyst. 2011 Jul;7(7):2278-85. doi: 10.1039/c1mb05028a. Epub 2011 May 16.
8
Porcine Toll-like receptors: recognition of Salmonella enterica serovar Choleraesuis and influence of polymorphisms.
Mol Immunol. 2011 May;48(9-10):1114-20. doi: 10.1016/j.molimm.2011.02.004. Epub 2011 Mar 17.
9
TLR signaling is required for Salmonella typhimurium virulence.
Cell. 2011 Mar 4;144(5):675-88. doi: 10.1016/j.cell.2011.01.031.
10
Virus interactions with human signal transduction pathways.
Int J Comput Biol Drug Des. 2011;4(1):83-105. doi: 10.1504/IJCBDD.2011.038658. Epub 2011 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验