School of Computer Science and Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.
PLoS Comput Biol. 2012;8(8):e1002640. doi: 10.1371/journal.pcbi.1002640. Epub 2012 Aug 16.
Embedded within large-scale protein interaction networks are signaling pathways that encode response cascades in the cell. Unfortunately, even for well-studied species like S. cerevisiae, only a fraction of all true protein interactions are known, which makes it difficult to reason about the exact flow of signals and the corresponding causal relations in the network. To help address this problem, we introduce a framework for predicting new interactions that aid connectivity between upstream proteins (sources) and downstream transcription factors (targets) of a particular pathway. Our algorithms attempt to globally minimize the distance between sources and targets by finding a small set of shortcut edges to add to the network. Unlike existing algorithms for predicting general protein interactions, by focusing on proteins involved in specific responses our approach homes-in on pathway-consistent interactions. We applied our method to extend pathways in osmotic stress response in yeast and identified several missing interactions, some of which are supported by published reports. We also performed experiments that support a novel interaction not previously reported. Our framework is general and may be applicable to edge prediction problems in other domains.
在大规模蛋白质相互作用网络中嵌入着信号通路,这些信号通路编码了细胞中的反应级联。不幸的是,即使对于像酿酒酵母这样研究得很好的物种,也只有一小部分真正的蛋白质相互作用是已知的,这使得很难推断信号的确切流向和网络中的相应因果关系。为了帮助解决这个问题,我们引入了一个预测新相互作用的框架,这些新相互作用有助于特定途径的上游蛋白质(源)和下游转录因子(目标)之间的连接。我们的算法试图通过找到一小部分捷径边来添加到网络中,从而全局最小化源和目标之间的距离。与预测一般蛋白质相互作用的现有算法不同,我们的方法专注于参与特定反应的蛋白质,从而将注意力集中在与途径一致的相互作用上。我们将我们的方法应用于扩展酵母中渗透胁迫反应的途径,并确定了几个缺失的相互作用,其中一些得到了已发表报告的支持。我们还进行了实验,支持了以前未报道过的一个新的相互作用。我们的框架是通用的,可能适用于其他领域的边缘预测问题。