Costa Jérôme, Tóth Eva, Helm Lothar, Merbach André E
Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Chimie Inorganique et Bioinorganique, EPFL-BCH, CH-1015 Lausanne, Switzerland.
Inorg Chem. 2005 Jun 27;44(13):4747-55. doi: 10.1021/ic0500309.
Two novel dinuclear Gd(III) complexes have been synthesized, based on a xylene core substituted with diethylenetriamine-N,N,N'',N''-tetraacetate (DTTA) chelators in para or meta position. The complexes [Gd2(pX(DTTA)2)(H2O)4]2- and [Gd2(mX(DTTA)2)(H2O)4]2- both exhibit high complex stability (log K(GdL) = 19.1 and 17.0, respectively), and a good selectivity for Gd(III) against Zn(II), the most abundant endogenous metal ion (log K(ZnL) = 17.94 and 16.19). The water exchange rate is identical within experimental error for the two isomers: k(ex)298 = (9.0 +/- 0.4) x 10(6) s(-1) for [Gd2(pX(DTTA)2)(H2O)4]2- and (8.9 +/- 0.5) x 10(6) s(-1) for [Gd2(mX(DTTA)2)(H2O)4]2-. It is very similar to the k(ex)298 of the structural analogue, bishydrated [Gd(TTAHA)(H2O)2]3-, and about twice as high as that of the monohydrated [Gd(DTPA)(H2O)]2- (TTAHA(6-) = N-tris(2-aminoethyl)amine-N',N',N'',N'',N''',N'''-hexaacetate; DTPA(5-) = diethylenetriamine-N,N,N',N'',N''-pentaacetate). This relatively fast water exchange can be related to the presence of two inner sphere water molecules which decrease the stereorigidity of the inner sphere thus facilitating the water exchange process. At all frequencies, the water proton relaxivities (r1 = 16.79 and 15.84 mM(-1) s(-1) for the para and meta isomers, respectively; 25 degrees C and 20 MHz) are remarkably higher for the two dinuclear chelates than those of mononuclear commercial contrast agents or previously reported dinuclear Gd(III) complexes. This is mainly the consequence of the two inner-sphere water molecules. In addition, the increased molecular size as compared to monomeric compounds associated with the rigid xylene linker between the two Gd(III) chelating subunits also contributes to an increased relaxivity. However, proton relaxivity is still limited by fast molecular motions which also hinder any beneficial effect of the increased water exchange rate.
基于在对位或间位被二乙烯三胺 - N,N,N'',N'' - 四乙酸(DTTA)螯合剂取代的二甲苯核心,合成了两种新型双核钆(III)配合物。配合物[Gd2(pX(DTTA)2)(H2O)4]2 - 和[Gd2(mX(DTTA)2)(H2O)4]2 - 均表现出高配合物稳定性(log K(GdL)分别为19.1和17.0),并且对钆(III)相对于最丰富的内源性金属离子锌(II)具有良好的选择性(log K(ZnL) = 17.94和16.19)。在实验误差范围内,两种异构体的水交换速率相同:对于[Gd2(pX(DTTA)2)(H2O)4]2 - ,k(ex)298 = (9.0 ± 0.4) × 10(6) s(-1);对于[Gd2(mX(DTTA)2)(H2O)4]2 - ,k(ex)298 = (8.9 ± 0.5) × 10(6) s(-1)。它与结构类似物双水合[Gd(TTAHA)(H2O)2]3 - 的k(ex)298非常相似,并且大约是一水合[Gd(DTPA)(H2O)]2 - 的两倍(TTAHA(6 - ) = N - 三(2 - 氨基乙基)胺 - N',N',N'',N'',N''',N'''- 六乙酸;DTPA(5 - ) = 二乙烯三胺 - N,N,N',N'',N'' - 五乙酸)。这种相对较快的水交换可能与两个内球水分子的存在有关,这两个水分子降低了内球的立体刚性,从而促进了水交换过程。在所有频率下,两种双核螯合物的水质子弛豫率(对于对位和间位异构体,r1分别为16.79和15.84 mM(-1) s(-1);25℃和20 MHz)明显高于单核商业造影剂或先前报道的双核钆(III)配合物。这主要是两个内球水分子的结果。此外,与两个钆(III)螯合亚基之间的刚性二甲苯连接体相关的与单体化合物相比增加的分子大小也有助于弛豫率的增加。然而,质子弛豫率仍然受到快速分子运动的限制,这也阻碍了水交换速率增加的任何有益效果。