Pitiot Alain, Bardinet Eric, Thompson Paul M, Malandain Grégoire
Mirada Solutions, Ltd., Level 1, 23-38 Hythe Bridge Street, Oxford, OX1 2EP, United Kingdom.
Med Image Anal. 2006 Jun;10(3):465-83. doi: 10.1016/j.media.2005.03.008. Epub 2005 Jun 15.
This manuscript tackles the reconstruction of 3-D volumes via mono-modal registration of series of 2-D biological images (histological sections, autoradiographs, cryosections, etc.). The process of acquiring these images typically induces composite transformations that we model as a number of rigid or affine local transformations embedded in an elastic one. We propose a registration approach closely derived from this model. Given a pair of input images, we first compute a dense similarity field between them with a block matching algorithm. We use as a similarity measure an extension of the classical correlation coefficient that improves the consistency of the field. A hierarchical clustering algorithm then automatically partitions the field into a number of classes from which we extract independent pairs of sub-images. Our clustering algorithm relies on the Earth mover's distribution metric and is additionally guided by robust least-square estimation of the transformations associated with each cluster. Finally, the pairs of sub-images are, independently, affinely registered and a hybrid affine/non-linear interpolation scheme is used to compose the output registered image. We investigate the behavior of our approach on several batches of histological data and discuss its sensitivity to parameters and noise.
本文通过对二维生物图像(组织学切片、放射自显影片、冷冻切片等)系列进行单模态配准来处理三维体积的重建。获取这些图像的过程通常会引发复合变换,我们将其建模为嵌入弹性变换中的多个刚性或仿射局部变换。我们提出了一种紧密基于此模型的配准方法。给定一对输入图像,我们首先使用块匹配算法计算它们之间的密集相似性场。我们使用经典相关系数的扩展作为相似性度量,以提高该场的一致性。然后,层次聚类算法会自动将该场划分为多个类别,我们从这些类别中提取独立的子图像对。我们的聚类算法依赖于推土机距离度量,并额外由与每个聚类相关联的变换的稳健最小二乘估计来引导。最后,对子图像对独立进行仿射配准,并使用混合仿射/非线性插值方案来合成输出的配准图像。我们研究了我们的方法在几批组织学数据上的行为,并讨论了其对参数和噪声的敏感性。