Suppr超能文献

膝关节的3特斯拉成像:初步经验

Three-tesla imaging of the knee: initial experience.

作者信息

Craig Joseph G, Go Lily, Blechinger Joseph, Hearshen David, Bouffard J Antonio, Diamond Mark, van Holsbeeck Marnix T

机构信息

Department of Diagnostic Radiology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.

出版信息

Skeletal Radiol. 2005 Aug;34(8):453-61. doi: 10.1007/s00256-005-0919-6. Epub 2005 Jun 21.

Abstract

PURPOSE

To assess 3-T imaging of the knee.

MATERIALS AND METHODS

We reviewed 357 3-T magnetic resonance images of the knee obtained using a dedicated knee coil. From 58 patients who had arthroscopy we determined the sensitivity and specificity for anterior cruciate ligament (ACL) tear and medial and lateral meniscal tear.

RESULTS

A chemical shift artifact showed prominently at 3 T even after improvements had been made by increasing the bandwidth. For complete ACL tear the sensitivity was 100% (95% confidence interval, CI, 75.30-100.00), and the specificity was 97.9% (95% CI 87.7-99.9). For the medial meniscus the sensitivity was 100.00% (95% CI 90.0-100.00), and the specificity was 83.3%(95% CI 66.6-95.3). For the lateral meniscus the sensitivity was 66.7% (95% CI 38.4-88.2), and the specificity was 97.6% (95% CI 87.1-99.9).

CONCLUSIONS

In general 3-T imaging allows a favorable display of anatomy and pathology. The lateral meniscus was assessed to be weaker than the other anatomic structures. Three-tesla imaging allows increased signal-to-noise ratio, increased resolution, and faster scanning times.

摘要

目的

评估膝关节的3T成像。

材料与方法

我们回顾了使用专用膝关节线圈获得的357例膝关节3T磁共振图像。从58例接受关节镜检查的患者中,我们确定了前交叉韧带(ACL)撕裂以及内侧和外侧半月板撕裂的敏感性和特异性。

结果

即使通过增加带宽进行了改进,化学位移伪影在3T时仍很明显。对于完全ACL撕裂,敏感性为100%(95%置信区间,CI,75.30 - 100.00),特异性为97.9%(95%CI 87.7 - 99.9)。对于内侧半月板,敏感性为100.00%(95%CI 90.0 - 100.00),特异性为83.3%(95%CI 66.6 - 95.3)。对于外侧半月板,敏感性为66.7%(95%CI 38.4 - 88.2),特异性为97.6%(95%CI 87.1 - 99.9)。

结论

总体而言,3T成像能够很好地显示解剖结构和病理情况。外侧半月板的评估结果显示其比其他解剖结构表现较弱。3T成像可提高信噪比、分辨率并缩短扫描时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验