Suppr超能文献

KinasePhos:一种用于识别蛋白激酶特异性磷酸化位点的网络工具。

KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites.

作者信息

Huang Hsien-Da, Lee Tzong-Yi, Tzeng Shih-Wei, Horng Jorng-Tzong

机构信息

Department of Biological Science and Technology, Institute of Bioinformatics, National Chiao Tung University, Hsin-Chu 300, Taiwan.

出版信息

Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W226-9. doi: 10.1093/nar/gki471.

Abstract

KinasePhos is a novel web server for computationally identifying catalytic kinase-specific phosphorylation sites. The known phosphorylation sites from public domain data sources are categorized by their annotated protein kinases. Based on the profile hidden Markov model, computational models are learned from the kinase-specific groups of the phosphorylation sites. After evaluating the learned models, the model with highest accuracy was selected from each kinase-specific group, for use in a web-based prediction tool for identifying protein phosphorylation sites. Therefore, this work developed a kinase-specific phosphorylation site prediction tool with both high sensitivity and specificity. The prediction tool is freely available at http://KinasePhos.mbc.nctu.edu.tw/.

摘要

KinasePhos是一个用于通过计算识别催化激酶特异性磷酸化位点的新型网络服务器。来自公共领域数据源的已知磷酸化位点按其注释的蛋白激酶进行分类。基于轮廓隐马尔可夫模型,从磷酸化位点的激酶特异性组中学习计算模型。在评估所学习的模型之后,从每个激酶特异性组中选择具有最高准确性的模型,用于基于网络的预测工具以识别蛋白质磷酸化位点。因此,这项工作开发了一种具有高灵敏度和特异性的激酶特异性磷酸化位点预测工具。该预测工具可在http://KinasePhos.mbc.nctu.edu.tw/免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/447e/1160232/08275a7fb407/gki471f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验