Wong Yung-Hao, Lee Tzong-Yi, Liang Han-Kuen, Huang Chia-Mao, Wang Ting-Yuan, Yang Yi-Huan, Chu Chia-Huei, Huang Hsien-Da, Ko Ming-Tat, Hwang Jenn-Kang
Institute of Bioinformatics, National Chiao Tung University, Hsin-chu 300, Taiwan.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W588-94. doi: 10.1093/nar/gkm322. Epub 2007 May 21.
Due to the importance of protein phosphorylation in cellular control, many researches are undertaken to predict the kinase-specific phosphorylation sites. Referred to our previous work, KinasePhos 1.0, incorporated profile hidden Markov model (HMM) with flanking residues of the kinase-specific phosphorylation sites. Herein, a new web server, KinasePhos 2.0, incorporates support vector machines (SVM) with the protein sequence profile and protein coupling pattern, which is a novel feature used for identifying phosphorylation sites. The coupling pattern [XdZ] denotes the amino acid coupling-pattern of amino acid types X and Z that are separated by d amino acids. The differences or quotients of coupling strength C(XdZ) between the positive set of phosphorylation sites and the background set of whole protein sequences from Swiss-Prot are computed to determine the number of coupling patterns for training SVM models. After the evaluation based on k-fold cross-validation and Jackknife cross-validation, the average predictive accuracy of phosphorylated serine, threonine, tyrosine and histidine are 90, 93, 88 and 93%, respectively. KinasePhos 2.0 performs better than other tools previously developed. The proposed web server is freely available at http://KinasePhos2.mbc.nctu.edu.tw/.
由于蛋白质磷酸化在细胞调控中的重要性,人们开展了许多研究来预测激酶特异性磷酸化位点。参考我们之前的工作,激酶磷酸化位点预测工具1.0(KinasePhos 1.0)将轮廓隐马尔可夫模型(HMM)与激酶特异性磷酸化位点的侧翼残基相结合。在此,一个新的网络服务器激酶磷酸化位点预测工具2.0(KinasePhos 2.0)将支持向量机(SVM)与蛋白质序列轮廓和蛋白质偶联模式相结合,这是一种用于识别磷酸化位点的新特征。偶联模式[XdZ]表示由d个氨基酸分隔的氨基酸类型X和Z的氨基酸偶联模式。计算磷酸化位点阳性集与来自Swiss-Prot的全蛋白质序列背景集之间偶联强度C(XdZ)的差异或商,以确定用于训练支持向量机模型的偶联模式数量。经过基于k折交叉验证和留一法交叉验证的评估,磷酸化丝氨酸、苏氨酸、酪氨酸和组氨酸的平均预测准确率分别为90%、93%、88%和93%。激酶磷酸化位点预测工具2.0的性能优于先前开发的其他工具。所提出的网络服务器可在http://KinasePhos2.mbc.nctu.edu.tw/免费获取。