Suppr超能文献

GraphPhos:基于图神经网络预测蛋白质磷酸化位点

GraphPhos: Predict Protein-Phosphorylation Sites Based on Graph Neural Networks.

作者信息

Wang Zeyu, Yang Xiaoli, Gao Songye, Liang Yanchun, Shi Xiaohu

机构信息

College of Computer Science and Technology, Jilin University, Changchun 130012, China.

School of Computer Science, Zhuhai College of Science and Technology, Zhuhai 519041, China.

出版信息

Int J Mol Sci. 2025 Jan 23;26(3):941. doi: 10.3390/ijms26030941.

Abstract

Phosphorylation is one of the most common protein post-translational modifications. The identification of phosphorylation sites serves as the cornerstone for protein-phosphorylation-related research. This paper proposes a protein-phosphorylation site-prediction model based on graph neural networks named GraphPhos, which combines sequence features with structure features. Sequence features are derived from manual extraction and the calculation of protein pre-trained language models, and the structure feature is the secondary structure contact map calculated from protein tertiary structure. These features are then innovatively applied to graph neural networks. By inputting the features of the entire protein sequence and its contact graph, GraphPhos achieves the goal of predicting phosphorylation sites along the entire protein. Experimental results indicate that GraphPhos improves the accuracy of serine, threonine, and tyrosine site prediction by at least 8%, 15%, and 12%, respectively, exhibiting an average 7% improvement in accuracy compared to individual amino acid category prediction models.

摘要

磷酸化是最常见的蛋白质翻译后修饰之一。磷酸化位点的识别是蛋白质磷酸化相关研究的基石。本文提出了一种基于图神经网络的蛋白质磷酸化位点预测模型GraphPhos,该模型将序列特征与结构特征相结合。序列特征来自于人工提取和蛋白质预训练语言模型的计算,结构特征是由蛋白质三级结构计算得到的二级结构接触图。然后将这些特征创新性地应用于图神经网络。通过输入整个蛋白质序列及其接触图的特征,GraphPhos实现了预测整个蛋白质上磷酸化位点的目标。实验结果表明,GraphPhos分别将丝氨酸、苏氨酸和酪氨酸位点预测的准确率至少提高了8%、15%和12%,与单个氨基酸类别预测模型相比,准确率平均提高了7%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/381d/11818044/6f5c30e79e24/ijms-26-00941-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验