Suppr超能文献

端粒严重缩短的小鼠胚胎干细胞中端粒姐妹染色单体交换增加。

An increase in telomere sister chromatid exchange in murine embryonic stem cells possessing critically shortened telomeres.

作者信息

Wang Yisong, Erdmann Natalie, Giannone Richard J, Wu Jun, Gomez Marla, Liu Yie

机构信息

Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6445, USA.

出版信息

Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10256-60. doi: 10.1073/pnas.0504635102. Epub 2005 Jul 6.

Abstract

Telomerase deficiency leads to a progressive loss of telomeric DNA that eventually triggers cell apoptosis in human primary cells during prolonged growth in culture. Rare survivors can maintain telomere length through either activation of telomerase or recombination-based telomere lengthening, and thus proliferate indefinitely. We have explored the possibility that telomeres may be maintained through telomere sister chromatid exchange (T-SCE) in murine telomere reverse transcriptase-deficient (mTert-/-) splenocytes and ES cells. Because telomerase deficiency leads to gradual loss of telomeric DNA in mTert-/- splenocytes and ES cells and eventually to chromosomes with telomere signal-free ends (SFEs), we examined these cell types for evidence of sister chromatid exchange at telomeres, and observed an increase in T-SCEs only in a subset of mTert-/- splenocytes or ES cells that possessed multiple SFEs. Furthermore, T-SCEs were more often detected in ES cells than in splenocytes that harbored a similar frequency of SFEs. In mTert heterozygous (mTert+/-) ES cells or splenocytes, which are known to exhibit a decrease in average telomere length but no SFEs, no increase in T-SCE was observed. In addition to T-SCE, other genomic rearrangements (i.e., SCE) were also significantly increased in mTert-/- ES cells possessing critically short telomeres, but not in splenocytes. Our results suggest that animals and cell culture differ in their ability to carry out genomic rearrangements as a means of maintaining telomere integrity when telomeres become critically shortened.

摘要

端粒酶缺陷会导致端粒DNA逐渐丢失,在原代人细胞长期培养过程中,最终会引发细胞凋亡。极少数存活细胞可通过激活端粒酶或基于重组的端粒延长来维持端粒长度,从而无限增殖。我们探讨了在小鼠端粒逆转录酶缺陷(mTert-/-)脾细胞和胚胎干细胞中,端粒是否可通过端粒姐妹染色单体交换(T-SCE)得以维持。由于端粒酶缺陷会导致mTert-/-脾细胞和胚胎干细胞中端粒DNA逐渐丢失,并最终形成无端粒信号末端(SFE)的染色体,我们检测了这些细胞类型中端粒处姐妹染色单体交换的证据,仅在具有多个SFE的部分mTert-/-脾细胞或胚胎干细胞中观察到T-SCE增加。此外,在具有相似SFE频率的情况下,胚胎干细胞中比脾细胞中更常检测到T-SCE。在已知平均端粒长度减少但无SFE的mTert杂合(mTert+/-)胚胎干细胞或脾细胞中,未观察到T-SCE增加。除了T-SCE,在具有极短端粒的mTert-/-胚胎干细胞中,其他基因组重排(即SCE)也显著增加,但在脾细胞中未增加。我们的结果表明,当端粒严重缩短时,动物和细胞培养在通过基因组重排来维持端粒完整性的能力方面存在差异。

相似文献

7
Telomere lengthening early in development.发育早期的端粒延长。
Nat Cell Biol. 2007 Dec;9(12):1436-41. doi: 10.1038/ncb1664. Epub 2007 Nov 4.
8
Telomeric function of mammalian telomerases at short telomeres.端粒酶在短端粒上的哺乳动物端粒功能。
J Cell Sci. 2010 May 15;123(Pt 10):1693-704. doi: 10.1242/jcs.063636. Epub 2010 Apr 27.

引用本文的文献

4
The role of telomere-binding modulators in pluripotent stem cells.端粒结合调节剂在多能干细胞中的作用。
Protein Cell. 2020 Jan;11(1):60-70. doi: 10.1007/s13238-019-0651-y. Epub 2019 Jul 27.

本文引用的文献

1
Telomere-binding factors and general DNA repair.端粒结合因子与一般DNA修复
Nat Genet. 2005 Feb;37(2):116-8. doi: 10.1038/ng0205-116.
6
Senescence and immortalization: role of telomeres and telomerase.衰老与永生化:端粒和端粒酶的作用
Carcinogenesis. 2005 May;26(5):867-74. doi: 10.1093/carcin/bgh296. Epub 2004 Oct 7.
7
Phosphorylation of H2AX at short telomeres in T cells and fibroblasts.T细胞和成纤维细胞中短端粒处H2AX的磷酸化。
J Biol Chem. 2004 Oct 22;279(43):45148-54. doi: 10.1074/jbc.M403924200. Epub 2004 Aug 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验