Caliński T, Czajka S, Kaczmarek Z, Krajewski P, Pilarczyk W
Department of Mathematical and Statistical Methods, Agricultural University, Wojska Polskiego 28, 60-637 Poznań, Poland.
Biometrics. 2005 Jun;61(2):448-55. doi: 10.1111/j.1541-0420.2005.00334.x.
Of interest is the analysis of results of a series of experiments repeated at several environments with the same set of plant varieties. Suppose that the experiments, multi-environment variety trials, are all conducted in resolvable incomplete block (IB) designs. Following the randomization approach adopted in Caliński and Kageyama (2000, Lecture Notes in Statistics, 150), two models for analyzing such trial data can be considered. One is derived under a complete additivity assumption, the other takes into account possible different responses of the varieties to variable environmental conditions. The analysis under the first, the standard model, does not provide answers to questions related to the performance of the individual varieties at different environments. These can be considered when using the more general second model. The purpose of this article is to devise interesting parameter estimation and hypothesis testing procedures under that more realistic model. Its application is illustrated by a thorough analysis of a set of data from a winter wheat series of trials.
有趣的是对一系列在多个环境中使用同一组植物品种重复进行的实验结果进行分析。假设这些实验,即多环境品种试验,均采用可分解不完全区组(IB)设计进行。遵循Caliński和Kageyama(2000年,《统计学讲义》,第150卷)采用的随机化方法,可以考虑两种用于分析此类试验数据的模型。一种是在完全可加性假设下推导出来的,另一种则考虑了品种对可变环境条件可能存在的不同反应。在第一个标准模型下的分析无法回答与各个品种在不同环境中的表现相关的问题。在使用更通用的第二个模型时可以考虑这些问题。本文的目的是在那个更现实的模型下设计有趣的参数估计和假设检验程序。通过对一组冬小麦系列试验数据的全面分析来说明其应用。