Bacallado Sergio, Diaconis Persi, Holmes Susan
Sequoia Hall, Stanford University.
Stat Comput. 2015 Jul 1;25(4):797-808. doi: 10.1007/s11222-015-9562-9.
Recent advances in Monte Carlo methods allow us to revisit work by de Finetti who suggested the use of approximate exchangeability in the analyses of contingency tables. This paper gives examples of computational implementations using Metropolis Hastings, Langevin and Hamiltonian Monte Carlo to compute posterior distributions for test statistics relevant for testing independence, reversible or three way models for discrete exponential families using polynomial priors and Gröbner bases.
蒙特卡罗方法的最新进展使我们能够重新审视德·菲内蒂的工作,他建议在列联表分析中使用近似可交换性。本文给出了使用梅特罗波利斯·黑斯廷斯算法、朗之万算法和哈密顿蒙特卡罗算法进行计算实现的示例,以计算与检验独立性、离散指数族的可逆或三向模型相关的检验统计量的后验分布,这些模型使用多项式先验和格罗比纳基。