Suppr超能文献

通过合成纳米直径孔隙的电解传输。

Electrolytic transport through a synthetic nanometer-diameter pore.

作者信息

Ho Chuen, Qiao Rui, Heng Jiunn B, Chatterjee Aveek, Timp Rolf J, Aluru Narayana R, Timp Gregory

机构信息

Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, USA.

出版信息

Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10445-50. doi: 10.1073/pnas.0500796102. Epub 2005 Jul 14.

Abstract

We have produced single, synthetic nanometer-diameter pores by using a tightly focused, high-energy electron beam to sputter atoms in 10-nm-thick silicon nitride membranes. Subsequently, we measured the ionic conductance as a function of time, bath concentration, and pore diameter to infer the conductivity and ionic mobility through the pores. The pore conductivity is found to be much larger than the bulk conductivity for dilute bath concentrations, where the Debye length is larger than the pore radius, whereas it is comparable with or less than the bulk for high bath concentrations. We interpret these observations by using multiscale simulations of the ion transport through the pores. Molecular dynamics is used to estimate the ion mobility, and ion transport in the pore is described by the coupled Poisson-Nernst-Planck and the Stokes equations that are solved self-consistently for the ion concentration and velocity and electrical potential. We find that the measurements are consistent with the presence of fixed negative charge in the pore wall and a reduction of the ion mobility because of the fixed charge and the ion proximity to the pore wall.

摘要

我们通过使用紧密聚焦的高能电子束溅射10纳米厚的氮化硅膜中的原子,制备出了单个的、合成的纳米直径孔隙。随后,我们测量了离子电导随时间、浴液浓度和孔径的变化,以推断通过孔隙的电导率和离子迁移率。对于稀浴液浓度,德拜长度大于孔隙半径,发现孔隙电导率远大于本体电导率,而对于高浴液浓度,孔隙电导率与本体电导率相当或小于本体电导率。我们通过对离子通过孔隙的传输进行多尺度模拟来解释这些观察结果。分子动力学用于估计离子迁移率,孔隙中的离子传输由耦合的泊松-能斯特-普朗克方程和斯托克斯方程描述,这些方程针对离子浓度、速度和电势进行自洽求解。我们发现测量结果与孔隙壁中存在固定负电荷以及由于固定电荷和离子靠近孔隙壁导致离子迁移率降低相一致。

相似文献

1
Electrolytic transport through a synthetic nanometer-diameter pore.
Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10445-50. doi: 10.1073/pnas.0500796102. Epub 2005 Jul 14.
2
Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels.
Biophys J. 1998 Sep;75(3):1287-305. doi: 10.1016/S0006-3495(98)74048-2.
3
Ion current rectification at nanopores in glass membranes.
Langmuir. 2008 Mar 4;24(5):2212-8. doi: 10.1021/la702955k. Epub 2008 Jan 29.
4
Ion Current Rectification and Long-Range Interference in Conical Silicon Micropores.
ACS Appl Mater Interfaces. 2022 Dec 21;14(50):56226-56236. doi: 10.1021/acsami.2c11467. Epub 2022 Dec 9.
6
Rectification properties of conically shaped nanopores: consequences of miniaturization.
Phys Chem Chem Phys. 2013 Oct 21;15(39):16917-26. doi: 10.1039/c3cp53105h. Epub 2013 Sep 3.
7
Ionic Conduction in Biological Nanopores Created by Ultrashort9 High-Intensity Pulses.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1-4. doi: 10.1109/EMBC.2018.8513372.
8
Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel.
Biophys J. 1997 Jan;72(1):97-116. doi: 10.1016/S0006-3495(97)78650-8.
9
Glutamate, water and ion transport through a charged nanosize pore.
Biochim Biophys Acta. 2007 Feb;1768(2):264-79. doi: 10.1016/j.bbamem.2006.08.015. Epub 2006 Aug 30.
10
Ion transport in sub-5-nm graphene nanopores.
J Chem Phys. 2014 Feb 28;140(8):084707. doi: 10.1063/1.4866643.

引用本文的文献

1
A network model to predict ionic transport in porous materials.
Proc Natl Acad Sci U S A. 2024 May 28;121(22):e2401656121. doi: 10.1073/pnas.2401656121. Epub 2024 May 24.
3
On the origins of conductive pulse sensing inside a nanopore.
Nat Commun. 2022 May 13;13(1):2186. doi: 10.1038/s41467-022-29758-8.
4
Overlimiting current near a nanochannel a new insight using molecular dynamics simulations.
Sci Rep. 2021 Jul 26;11(1):15216. doi: 10.1038/s41598-021-94477-x.
5
Engineering adjustable two-pore devices for parallel ion transport and DNA translocations.
J Chem Phys. 2021 Mar 14;154(10):105102. doi: 10.1063/5.0044227.
6
Beyond mass spectrometry, the next step in proteomics.
Sci Adv. 2020 Jan 10;6(2):eaax8978. doi: 10.1126/sciadv.aax8978. eCollection 2020 Jan.
7
Synthetic protein-conductive membrane nanopores built with DNA.
Nat Commun. 2019 Nov 4;10(1):5018. doi: 10.1038/s41467-019-12639-y.
8
Specific ion effects at graphitic interfaces.
Nat Commun. 2019 Oct 24;10(1):4858. doi: 10.1038/s41467-019-12854-7.
9
Colloquium: Ionic phenomena in nanoscale pores through 2D materials.
Rev Mod Phys. 2019;91. doi: 10.1103/RevModPhys.91.021004.
10
Measurements of the size and correlations between ions using an electrolytic point contact.
Nat Commun. 2019 May 30;10(1):2382. doi: 10.1038/s41467-019-10265-2.

本文引用的文献

1
Microscopic Kinetics of DNA Translocation through synthetic nanopores.
Biophys J. 2004 Sep;87(3):2086-97. doi: 10.1529/biophysj.104.042960.
2
Surface-charge-governed ion transport in nanofluidic channels.
Phys Rev Lett. 2004 Jul 16;93(3):035901. doi: 10.1103/PhysRevLett.93.035901. Epub 2004 Jul 15.
3
Fabrication of solid-state nanopores with single-nanometre precision.
Nat Mater. 2003 Aug;2(8):537-40. doi: 10.1038/nmat941.
4
A microscopic view of ion conduction through the K+ channel.
Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8644-8. doi: 10.1073/pnas.1431750100. Epub 2003 Jul 1.
6
Fabrication of a synthetic nanopore ion pump.
Phys Rev Lett. 2002 Nov 4;89(19):198103. doi: 10.1103/PhysRevLett.89.198103. Epub 2002 Oct 18.
8
Ion-beam sculpting at nanometre length scales.
Nature. 2001 Jul 12;412(6843):166-9. doi: 10.1038/35084037.
9
Metastability and nucleation in capillary condensation.
Phys Rev Lett. 2000 Mar 13;84(11):2433-6. doi: 10.1103/PhysRevLett.84.2433.
10
The nicotinic acetylcholine receptor: from molecular model to single-channel conductance.
Eur Biophys J. 2000;29(1):29-37. doi: 10.1007/s002490050248.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验